
QUANTUMQUANTUMOSOS 2024 2024
NSF Workshop on Quantum Operating Systems and Real-Time Control

QuantumInstitute.yale.edu/QuantumOS

About the Workshop
As quantum hardware scales up and becomes increasingly heterogeneous

and distributed, a quantum OS will be responsible for executing error-

correcting kernels (e.g., decoders), allocating systems resources (e.g.

entanglement, magic states, etc), managing shared quantum memory

(e.g., storage, and qRAM), and scheduling batch/concurrent programs

and applications. Quantum OS is the essential tool that guarantees

to sustain precision control of large quantum systems and manage

quantum resources for practical QC applications. This workshop aims to

explore how the emerging quantum systems enable and expand novel

Computer Systems Research (CSR) opportunities and promote cross-

disciplinary collaborations.

Organizers

November 3 - Austin, Texas

National Science Foundation Award #2435033

Yongshan Ding (Co-Chair), Yale

Yunong Shi (Co-Chair), AWS

Zheng Zhang (Co-Chair), Rutgers

Steve Flammia, Virginia Tech

Steven Girvin, Yale

Blake Johnson, IBM

Speakers

Harry Buhrman (Amsterdam)

Laura Caune (Riverlane)

Nicolas Delfosse (lonQ)

Florian Huber (QuEra)

Costin Iancu (LBNL)

Christina Lee (PennyLane)

Diego Riste (IBM)

Rob Schoelkopf (Yale)

Ruben Verresen (UChicago)

Bart van der Vecht (Delft)

Xiaodi Wu (UMD)

Hengyun -Harry- Zhou (Harvard)

QUANTUMQUANTUMOSOS 2024 2024
NSF Workshop on Quantum Operating Systems and Real-Time Control

8 am - Check in - Breakfast [Salon H]

8 am - Welcome and Introduction by the organizers [Salon J]

8:40 am - Keynote 1 - Hardware/Architecture: Rob Schoelkopf (Yale)
Post-NISQ Quantum Computing: Real-time Control and Error Detection with Superconducting Qubits
9:10 am - Talk 1: Florian Huber (QuEra)
Control System Stack for Neutral Atom Quantum Computing
9:40 am - Talk 2: Ruben Verresen (UChicago)
Quantum States of Matter from Adaptive Circuits: Theory and Experiment
10:10 am - Talk 3: Xiaodi Wu (UMD)
RISC-Q: A Generator for Real-time Quantum Control System-on-Chip (SoCs) compatible with RISC-V

10:40 am - Coffee

11 am - Talk 4: Costin Iancu (LBNL)
Resource Management to Support Design Automation for Quantum Computing
11:30 am - Talk 5: Christina Lee (PennyLane)
PennyLane: A full-stack software ecosystem for quantum computing research

12 pm - Lunch [Salon H]

1:30 pm - Keynote 2 - Algorithms/Applications: Harry Buhrman (Amsterdam) [Salon J]
Parallelizing quantum circuits: trading time for space
2 pm - Talk 6: Nicolas Delfosse (lonQ)
Low-cost noise reduction for Clifford circuits
2:30 pm - Talk 7: Diego Riste (IBM)
Combining superconducting QPUs via real-time classical communication
3 pm - Talk 8: Laura Caune (Riverlane)
Quantum error correction experiments decoded in real time and with low-latency response on a superconducting
quantum computer

3:30 pm - Coffee

4:00 pm - Talk 9: Bart van der Vecht (Delft)
Design and demonstration of an operating system for executing applications on quantum network nodes
4:30 pm - Talk 10: Hengyun -Harry- Zhou (Harvard)
Fast quantum interconnects via constant-rate entanglement distillation

5 pm - Parallel 1: Poster Session (for accepted submissions)
5 pm - Parallel 2: Breakout Discussion and Q&A (for invited participants)

6 pm - SOSP Conference Reception [Salon H]

Agenda

QUANTUMQUANTUMOSOS 2024 2024

QuReplica: quantum state “replication” for DQC and its runtime scheduling framework
Yuhang Gan, Runzhou Tao, Ruilin Zhou, and Chen Qian
University of California at Santa Cruz, University of Maryland

Design and demonstration of an operating system for executing applications on quantum network nodes
Bart van der Vecht, Mariagrazia Iuliano, Carlo Delle Donne, and Stephanie Wehner
 QuTech, Kavli Institute of Nanoscience, Delft University of Technology

Generation of long-range entanglement enhanced by error detection
Haoran Liao, Gavin Hartnett, Ashish Kakkar, Pranav Mundada, Michael Biercuk, and Yuval Baum
 Q-CTRL, Los Angeles & Sydney Australia

Quantum Noise Effects on QAOA for Reconfigurable Microgrid Networks
Betis Baheri, Yan Li, Qiang Guan, and Wei Xu
Kent State University, The Pennsylvania State University, Brookhaven National Laboratory

Quantum error correction experiments decoded in real time and with low-latency response on a superconducting
quantum computer
Laura Caune, Luka Skoric, Nick Blunt, Archibald Ruban, Jimmy McDaniel, Joseph A. Valery, Andrew D. Patterson, Alexander V. Gramolin, Joonas
Majaniemi, Kenton M. Barnes, Tomasz Bialas, Okan Bugdaycı, Ophelia Crawford, György P. Gehér, Hari Krovi, Elisha Matekole, Canberk Topal, Stefano
Poletto, Michael Bryant, Kalan Snyder, Neil I. Gillespie, Glenn Jones, Kauser Johar, Earl Campbell, and Alexander D. Hill
Riverlane

Protocols and Applications of Quantum Stack Memory
Leonard Li, Lingjun Xiong, and Yuan Liu
North Carolina State University

Fast quantum interconnects via constant-rate entanglement distillation
Hengyun Zhou, Christopher Pattison, Gefen Baranes, Pablo Bonilla Ataides, and Mikhail Lukin
QuEra Computing Inc., Harvard University, MIT, Caltech

QuantumOS Support for Quantum Trusted Execution Environments
Theodoros Trochatos and Jakub Szefer
Yale University

Design and Implementation of the Quantum Cloud Simulation Framework
Waylon Luo, Betis Baheri, Bo Fang, and Qiang Guan
Kent State University, Pacific Northwest National Laboratory

LEGO: QEC Decoding System Architecture for Dynamic Circuits
Yue Wu, Namitha Liyanage, and Lin Zhong
Yale University

A Case for OS-Managed Resource Pools in Fault-Tolerant Quantum Computers
Suhas Vittal and Moinuddin Qureshi
Georgia Institute of Technology

A Scalable Quantum Circuit Knitting Framework via Parallel and Hardware-Efficient Circuit Cutting
Xiangyu Ren, Mengyu Zhang, and Antonio Barbalace
The University of Edinburgh UK, Tencent Quantum Lab Shenzhen China

Understanding Real Time Decoding for Photonic Quantum Computers
Avinash Kumar, Eneet Kaur, and Poulami Das
The University of Texas at Austin, CISCO Research

Pauli Check Sandwiching for Quantum Characterization and Error Mitigation during Runtime
Joshua Gao, Ji Liu, Alvin Gonzales, Zain Saleem, Nikos Hardavellas, and Kaitlin Smith
Virginia Tech, Argonne National Laboratory, Northwestern University

Quantum Tape and Stack Data Structures
Ulrik de Muelenaere and Peter M. Kogge
University of Notre Dame

A Formalization of Measurement Commuting Unitaries
Ulrik de Muelenaere, Sinan Pehlivanoglu, Amr Sabry, and Peter M. Kogge
University of Notre Dame, Indiana University Bloomington

Characterizing Equivalences Between Shallow Quantum Circuit Models
Ben Foxman and Akshat Yaparla
Yale University, Columbia University

Quantum Control of an Oscillator with a Kerr-cat Qubit
A. Ding, B. Brock, A. Eickbusc A. Koottandavida, N. Frattini, R. Cortiñas, V. Joshi, S. de Graaf, B. Chapman, S. Ganjam, L. Frunzio, R. Schoelkopf, M. Devoret
Yale University

Architecting a quantum operating system: microkernel, message passing and supercomputing
Alexandru Paler
Aalto University

Accepted Abstracts
By order of submissions Book of abstracts available online at

QuantumInstitute.yale.edu/QuantumOS

QUANTUMQUANTUMOSOS 2024 2024

HELGOLAND 2025
100 Years of Quantum Mechanics
June 9-14, 2025
Helgoland Island - Germany

Program & Organization Committees
Časlav Brukner - IQOQI Vienna
Steve Girvin - Yale Quantum Institute
Jack Harris - Yale Quantum Institute
Florian Marquardt – Max Planck Institute for the Science of Light
Florian Carle – Yale Quantum Institute
Katharina Kißner - Max Planck Institute for the Science of Light
Gesine Murphy – Max Planck Institute for the Science of Light

helgoland2025.org

Meetings of possible interest to the QuantumOS community

NSF NQVL ERASE
Erasure Qubits and Dynamic Circuits for Quantum Advantage
Town Halls
February, April, and August 2025
New Haven, CT - United State

The ERASE project will establish a National Quantum Virtual Laboratory (NQVL)
to develop an innovative quantum computing platform based on dual-resonator
‘erasure flag’ qubits that enhance the error detection and correction required to
achieve practical quantum computing.

ERASE.yale.edu (coming soon)

QEC 2025
7th International Conference on Quantum Error Correction

August 11-15, 2025

New Haven, CT - United State

Program & Organization Committees
Stephen Bartlett - The University of Sydney

Kenneth Brown - Duke University

Earl Campbell - University of Sheffield & Riverlane
Steve Flammia - Virginia Tech

Steve Girvin - Yale Quantum Institute

Amy Badner - Yale Quantum Institute

Florian Carle - Yale Quantum Institute

Aleksander Kubica - Yale Quantum Institute

Shruti Puri - Yale Quantum Institute

quantuminstitute.yale.edu/qec25

�Replica: quantum state "replication" for DQC and its runtime
scheduling framework

Yuhang Gan∗
University of California, Santa Cruz

Santa Cruz, CA, USA
ygan11@ucsc.edu

Runzhou Tao∗
University of Maryland, College Park

College Park, MD, USA
runzhou.tao@columbia.edu

Ruilin Zhou
University of California, Santa Cruz

Santa Cruz, CA, USA
rzhou39@ucsc.edu

Chen Qian
University of California, Santa Cruz

Santa Cruz, CA, USA
cqian12@ucsc.edu

1 Introduction
Scalability is one of the most important factors in determining the
success of quantum computing. It is commonly believed that a us-
able quantum computing system requires millions of computing
qubits to perform practical computational tasks (e.g., factoring [12]).
Distributed computing, a paradigm that has been proven to be
highly successful on classical computing systems over the past two
decades, has become one of the most promising solutions for scaling
up quantum computing systems and has attracted increasing atten-
tion [6, 16]. By forming a Distributed Quantum Computing (DQC)
system with multiple quantum processing units(QPU) of slightly
weaker computational power, it is possible to greatly expand the
scale of the whole system.

However, similar to classical distributed computing, data trans-
mission, i.e., the communication between nodes, is a critical bottle-
neck in DQC as well [1, 14]. It is common in distributed systems
that a piece of data needs to be shared among di�erent nodes and
may be modi�ed by any node at any time [16, 17]. Hence, the
protocols and transmission methods for data transfer need to be
carefully designed during the computation process to ensure the
correctness of the data while minimizing the overhead of system
communication [7].

In classical distributed computing, systems can set up replicas
of the data in di�erent computing nodes to reduce the data trans-
mission process. The replica has demonstrated its powerful ability
in failure recovery, load balancing, and enhancing locality to accel-
erate the computation [6, 8, 11, 16]. In quantum computing, due to
the no-cloning theorem, we can not copy quantum data. Instead,
entangled quantum states can be used across di�erent nodes as a
communication resource for a particular qubit’s data transmission.
By consuming entanglement pairs, besides teleportation, the gener-
alized GHZ state establishment via cat-entangler [15] between two
or more qubits can be achieved to share the state information of
one qubit on one QPU with other QPUs for performing non-local
multi-qubit gates.

Multiple works have been proposed to use quantum entangle-
ments to share data between multiple QPUs in DQC [5, 13–15].

∗Both authors contributed equally to this research.

Conference’17, July 2017, Washington, DC, USA
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

However, they have several drawbacks that limit their scalability.
First, most approaches focus on minimizing communication over-
head by mapping quantum programs to QPUs at the compilation
stage, preventing runtime adaptations and limiting �exibility. While
some consider system state during mapping, static compiling-time
optimization is ill-suited for the dynamic nature of quantum com-
puting systems, leading to suboptimal performance. As quantum
programs grow in size and complexity, allocating resources based
on the system’s pre-run state without runtime adaption becomes
impractical. Furthermore, scheduling programs statically requires
all programs in a batch to run together, even though they may have
di�erent runtime and resource needs, reducing scalability.

Second, due to concerns about the consistency of state sharing
of qubits across QPUs, most of the existing work employs a passive
ad hoc scheduling of communication resources: state sharing by
creating multi-qubits GHZ state is performed only when needed
and is deactivated as soon as it is completed to ensure program
correctness. However, due to the non-locality of entanglement,
we do not need to always cancel all GHZ state replicas of a qubit
when encountering an arbitrary gate performing on this qubit. An
example is, for a GHZ state, U |00...0i+V |11...1i, when we perform a
Z gate on the �rst qubit, the phase of this GHZ state will “globally"
change toU |00...0i�V |11...1i, the state information is still consistent
between the original qubit and its all replica qubits. Actually, this
applies to all phase gates. Besides, research about using the GHZ
state to share state information among di�erent compute nodes
in DQC is under-explored and is limited to the most basic 2-qubit
scenarios [14].

Third, current work also lacks a discussion of multi-tenancy sce-
narios for distributed quantum computing systems. Existing works
on multi-tenant scenarios are mostly limited to allocating physi-
cal qubits on a single QPU to di�erent programs, named quantum
multi-programming [4, 9, 10].

In this work, we propose QuReplica, a proactive data-sharing
framework combining dynamic runtime scheduling and static com-
pilation using the generalized GHZ state in multi-tenant DQC sce-
narios. In the static compilation stage, we annotate the program
using �ags to reveal potential opportunities for setting replicas of
some qubits by creating a GHZ state of a qubit via cat-entangler [15]
to reduce communication overhead among QPUs while ensuring
computation correctness. Then, based on these annotations, the
runtime scheduler dynamically creates and recycles replicas of

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Yuhang Gan, Runzhou Tao, Ruilin Zhou, and Chen Qian

DQC Program Queue
Replica Recycling

new prog. or barrier

Cancel all
replicas of a

qubit for
correctness

 Recycling for
new program

......

......

......

......

Repica
 discovery

Comp. qubits
monitoring

Replica Deployment

Repica
instantiation

Runtime

Logic to physical
qubit mapping

Remote gates
aggregation

Circuit annotation
 with

 runtime flag

Compilation
High-level
compiling

optimization

Figure 1: Overview of QuReplica work�ow

qubits according to the system’s real-time state during program
executions. Instead of trying to complete all optimizations at the
compilation stage, we �rst brought dynamic runtime resource man-
agement and scheduling into the multi-tenant DQC system, which
could be a good starting point for exploring the future quantum
operating system (QuOS).

2 QuReplica and its runtime scheduling
The goal of QuReplica is to allow dynamic runtime scheduling for
state sharing of some qubits to reduce the overall communication
overhead in multi-tenant DQC. QuReplica consists of three major
components as shown in Fig. 1: 1) Circuit annotation with replica
�ags after normal compilation optimization and mapping steps
to reveal potential opportunities of setting replicas of a qubit to
reduce communication overhead by adding some annotation �ags;
2) A replica deployment module that creates replica qubits when
possible; And 3) A replica recycling module that cancels some or all
replica qubits to release computing qubits for new joining programs
to get better initial mapping or guarantee computing correctness.

In the rest of this section, we will use a simpli�ed version of
Quantum Fourier Transform(QFT) based algorithm as a running
example to give a high-level overview of QuReplica. Quantum
Fourier Transform (QFT) is the basic functional block of many
important quantum algorithms [2, 3]. Fig. 2 shows a simpli�ed
QFT-base algorithm circuit. It is evident that @< is the control
qubit for many two-qubit gates involving several other qubits (e.g.,
@0,@1,@2,@3) and may be a�ected by some phase gates. In a DQC
setup, these qubits will be distributed across di�erent QPUs. Fig. 3
shows a possible condition that runs the circuit in Fig. 2 on a DQC
system with three QPUs (�,⌫,⇠) in line topology. @0,@1,@2,@3 and
@< are deployed on QPU �,⌫,⇠ separately and @20,@21,@22 are
communication qubits belongs to each QPU node.

At the compilation stage, after obtaining the initial qubit map-
ping, we identify all remote gates and need to determine which
qubits should have replicas on other QPUs. When annotating the
DQC program, two main questions arise: 1) For which qubits to
set up replicas, on which QPUs, and when; and 2) When to recy-
cle the replica qubits to maintain program correctness and system
performance, in what quantities. Replicas are needed for all re-
mote gates, except those handled by teleportation, with the key
challenge being when to set them up. The worst case is an ad-hoc
setup, which eliminates dynamic runtime scheduling and relies on
static compilation results, introducing fully remote gate latency.
Setting up in advance can hide this overhead during previous gate
execution. During annotation, we divide the circuit of each qubit
into segments using certain gates (e.g., � ,'G ,'~) that will break
the GHZ state as segmentation points. Each segment has a earliest

setup time and a latest recycling time for setting replica qubits,
marked by a “barrier” �ag at the end.

For the@< shown in Fig. 3, since it can only be subjected to phase
gates during a period of time, which has no e�ect on the GHZ state,
when adding the annotation, we set the earliest replica set up time
of this segmentation of @< to be “after the �rst H-gate”, and the
latest recycling time to be “before the second H-gate” " and insert
a “barrier” �ag before the second H gate and add corresponding
cat-disentangler circuit to cancel the replicas.

At runtime, the replica deployment module maintains one pri-
ority queue on each QPU. Based on the priority of each replica
fragment (determined by the gain and urgency of the replica) and
the availability of computing qubits on QPUs, it utilizes the avail-
able computing qubits to set the replica qubits required by a remote
gate when the communication qubits are idle. This asynchronous
establishment method can fully utilize the communication qubits
and reduce the competition between di�erent remote gates for
communication resources, compared with using the remote gate to
establish the replica instantly only when it is needed.

In Fig. 3, since the qubits that are to use the @< state information
are distributed in QPU A and B, we need to use communication
qubits to build the replica of @< on A and B via cat-entangler. We
�rst use @21,@22 to share the state information of @< to QPU B. We
assume that @A<1 is idle at this time, and then we build the replica
qubit of @< on QPU B by applying a swap gate. Subsequently, for
QPU A, since the qubit @G of the previously running program occu-
pies the computing qubit of QPU A during the initial mapping, for
@0 and @1, without the use of runtime scheduling, and based on the
compilation result alone, we can only fully occupy @20 to share @< ’s
state to complete the remote gate that blocking the other qubits
from using @20. However, through the replica deployment module’s
monitoring of runtime computing qubits, we can �nd that the com-
puting qubit occupied by @G is released in time to be used to build
@< ’s replica qubit @A<2 on QPU A ahead of time, asynchronously
using @20, thus avoiding resource competition blocking.

The third part of the QuReplica, the replica recycling module, is
responsible for unsetting the replica qubits to ensure the correct-
ness of the program and the overall performance of the system.
Both @< as well as @A<1,@

A
<2 pause when execution reaches a pre-

viously set barrier �ag, wait for each other until synchronization
is reached, and via cat-disentangler, all replica qubits are canceled
before the H gate is applied to @< . By setting the barrier to syn-
chronize qubits and their replica qubits, we avoid the inconsistency
between the original qubit @< and the replica qubits @A<1,@

A
<2 and

H

U

TS
U

U

Z

U

…
U

U

H

U
U

…

QFT

Controlled-Phase Gate

Inverse QFT

…
…

…

…

!!
!"
!#

!$
!%

!&
!'
!(

Figure 2: QFT-based algorithm example

�Replica: quantum state "replication" for DQC and its runtime scheduling framework Conference’17, July 2017, Washington, DC, USA

H HTSZ!!

0

!!"#

!$

!%&
!%"

!%'

… …
… …

RA

RA
…
…

…
…!(

!&

!"
!'

RR

A

B

C

b

b

b

barrier for !!

…

…

…

QFT

QFT

!)*+

!!&#

RA: Replica Allocation;
RR: Replica Recycling;

Figure 3: QFT-based algorithm example instance in DQC
system. The left �gure is the DQC topology with QPU A, B,
and C; The right �gure is a real instance of the circuit in Fig. 2
running on the DQC system. @G is a logical qubit of another
program, @A<1,@

A
<2 are the replica qubits of @< .

ensure the correctness of the program. Besides, if canceling some
replica qubits can improve the initial mapping for a new program
and the bene�t outweighs maintaining them, we can actively cancel
the corresponding qubits to enhance system performance.

References
[1] David Barral, F Javier Cardama, Guillermo Díaz, Daniel Faílde, Iago F Llovo,

MariamoMussa Juane, Jorge Vázquez-Pérez, Juan Villasuso, César Piñeiro, Natalia
Costas, et al. 2024. Review of distributed quantum computing. from single qpu to
high performance quantum computing. arXiv preprint arXiv:2404.01265 (2024).

[2] Francesco Bova, Avi Goldfarb, and Roger GMelko. 2021. Commercial applications
of quantum computing. EPJ quantum technology 8, 1 (2021), 2.

[3] Don Coppersmith. 2002. An approximate Fourier transform useful in quantum
factoring. arXiv preprint quant-ph/0201067 (2002).

[4] Poulami Das, Swamit S Tannu, Prashant J Nair, and Moinuddin Qureshi. 2019.
A case for multi-programming quantum computers. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. 291–303.

[5] Davide Ferrari, Angela Sara Cacciapuoti, Michele Amoretti, and Marcello Cale�.
2021. Compiler design for distributed quantum computing. IEEE Transactions on
Quantum Engineering 2 (2021), 1–20.

[6] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. 2003. The Google �le
system. In Proceedings of the nineteenth ACM symposium on Operating systems
principles. 29–43.

[7] Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001) (2001), 51–58.

[8] Eliezer Levy and Abraham Silberschatz. 1990. Distributed �le systems: Concepts
and examples. ACM Computing Surveys (CSUR) 22, 4 (1990), 321–374.

[9] Lei Liu and Xinglei Dou. 2021. Qucloud: A new qubit mapping mechanism for
multi-programming quantum computing in cloud environment. In 2021 IEEE
International symposium on high-performance computer architecture (HPCA). IEEE,
167–178.

[10] SiyuanNiu andAida Todri-Sanial. 2023. Enablingmulti-programmingmechanism
for quantum computing in the NISQ era. Quantum 7 (2023), 925.

[11] Gang Peng. 2004. CDN: Content distribution network. arXiv preprint cs/0411069
(2004).

[12] Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th annual symposium on foundations of computer
science. Ieee, 124–134.

[13] Anbang Wu, Yufei Ding, and Ang Li. 2023. Qucomm: Optimizing collective
communication for distributed quantum computing. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture. 479–493.

[14] Anbang Wu, Hezi Zhang, Gushu Li, Alireza Shabani, Yuan Xie, and Yufei Ding.
2022. Autocomm: A framework for enabling e�cient communication in dis-
tributed quantum programs. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1027–1041.

[15] Anocha Yimsiriwattana and Samuel J Lomonaco Jr. 2004. Distributed quantum
computing: A distributed Shor algorithm. In Quantum Information and Computa-
tion II, Vol. 5436. SPIE, 360–372.

[16] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: A {Fault-Tolerant} abstraction for {In-Memory}
cluster computing. In 9th USENIX symposium on networked systems design and
implementation (NSDI 12). 15–28.

[17] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the twenty-fourth ACM symposium on operating systems
principles. 423–438.

Design and demonstration of an operating system for executing applications on

quantum network nodes*

Carlo Delle Donne1,2, Mariagrazia Iuliano1, Bart van der Vecht1,2, and Stephanie Wehner1,2,†

1QuTech and Kavli Institute of Nanoscience, Delft University of Technology
2Quantum Computer Science, Department of Software Technology, Delft University of Technology

†For full co-author list see full paper*

1 Introduction

The goal of future quantum networks is to enable new internet
applications that are impossible to achieve using solely clas-
sical communication[1, 2, 3]. Up to now, demonstrations of
quantum network applications[4, 5, 6] and functionalities[7,
8, 9, 10, 11, 12] on quantum processors have been performed
in ad-hoc software that was specific to the experimental setup,
programmed to perform one single task (the application exper-
iment) directly into low-level control devices using expertise
in experimental physics. Here, we report on the design and
implementation of the first architecture capable of execut-
ing quantum network applications on quantum processors in
platform-independent high-level software. We demonstrate
the architecture’s capability to execute applications in high-
level software, by implementing it as a quantum network op-
erating system - QNodeOS - and executing test programs in-
cluding a delegated computation from a client to a server[13]
on two quantum network nodes based on nitrogen-vacancy
(NV) centers in diamond[14, 15]. We show how our archi-
tecture allows us to maximize the use of quantum network
hardware, by multitasking different applications on a quan-
tum network for the first time. Our architecture can be used to
execute programs on any quantum processor platform corre-
sponding to our system model, which we illustrate by demon-
strating an additional driver for QNodeOS for a trapped-ion
quantum network node based on a single 40Ca+atom[16].
Our architecture lays the groundwork for computer science
research in the domain of quantum network programming,
and paves the way for the development of software that can
bring quantum network technology to society.

2 Design Considerations and Challenges

Interactive Classical-Quantum Execution: Quantum network
program instructions can be divided into classical blocks
(including message-passing over the network) and quantum

* Full paper: https://doi.org/10.48550/arXiv.2407.18306

blocks (gates, measurements, remote entanglement genera-
tion) and these blocks are highly interdependent. The ex-
ecution of quantum network applications hence requires a
continuing interaction between the quantum and classical
parts of the execution.

Different Hardware Platforms: Interfacing with different
hardware platforms presents technological challenges: cur-
rently, a clear line between software and hardware has not
been defined, and the low-level control of present-day quan-
tum processor hardware has been built to conduct physics
experiments. Early microarchitectures [17, 18] and operating
systems [19, 20] for quantum computing do not address the
execution of quantum network applications.

Timescales: A quantum network node must operate at
vastly different timescales. For nodes separated by many kilo-
meters, the duration of network operations is in the millisec-
ond (ms) regime, and some applications [2] need significant
local classical processing (ms). In contrast, execution time of
local quantum operations is in the regime of microseconds
(µs), and the low-level control (including timing synchroniza-
tion between nodes to generate entanglement [21]) requires
nanosecond (ns) precision.

Memory Lifetimes: Present-day quantum network nodes
have short coherence times, posing a technological challenge
to ensure operations are executed within the timeframe al-
lowed by the quantum memory.

Scheduling Local and Network Operations: Heralded entan-
glement generation requires agreement between neighboring
network nodes to trigger entanglement generation in precise
time-bins [22], organized into a network schedule [23] that
dictates when nodes make entanglement. It is a technologi-
cal challenge to manage the interdependencies between the
schedule of local operations and of networked operations,
since in all current quantum node implementations [24, 25],
entanglement generation cannot be performed simultaneously
with local quantum operations [24, 26].

Multitasking: When executing quantum network applica-
tions, one node is typically idle while waiting for the other
node before it can continue execution. A fundamental chal-

1

https://doi.org/10.48550/arXiv.2407.18306

lenge is how system utility can be increased by multitask-
ing [27, 28], that is, allowing concurrent execution of sev-
eral programs at once to make use of idle times. There is
hence need for managing state and resources for multiple in-
dependent programs, including processes, quantum memory
management, and entanglement requests.

Figure 1: QNodeOS architecture. (a) QNodeOS consists of
a Classical Network Processing Unit (CNPU) and a Quan-
tum Network Processing Unit (QNPU, classical system).
QNodeOS controls a QDevice (quantum hardware and low-
level classical control).

3 Architecture

We present our QNodeOS architecture, which is logically di-
vided into three main components (Figure 1): The CNPU
for execution of classical code blocks; the QNPU for gov-
erning execution of quantum code blocks; The CNPU and
QNPU together form QNodeOS and control the QDevice,
which executes quantum operations (gates, measurements,
entanglement generation at the physical layer [22]) on the
quantum hardware. This logical division allows for realiz-
ing different timing granularities, addressing the challenge of
different timescales.

We introduce a QDriver realizing a hardware abstraction
layer (HAL) for any hardware corresponding to our minimal
QDevice system model. The QDriver is responsible for trans-
lating quantum operations, expressed in NetQASM [29], into
platform dependent (streams of) physical instructions to the

underlying QDevice. We realize a QDriver for the trapped-ion
system of [30, 31], and one for NV centers in diamond based
on the system of [7, 24, 32].

Because of the interactive nature of programs, the architec-
ture needs to be able to dynamically handle both classical and
quantum blocks, even if not known at runtime. Therefore, our
QNPU is continuously ready to receive new quantum blocks
from the CNPU, and the QDevice can continuously receive
and respond to physical instructions from the QNPU.

QNodeOS uses a QNPU scheduler that allows interleaving
the execution of different processes directly on the QNPU
without incurring delays on the timescale of the CNPU (ms),
addressing the challenge of short coherence times. In our im-
plementation, we use a priority based non-preemptive sched-
uler [33], due to limited quantum memory lifetimes, which
make it undesirable to pre-empt and temporarily store quan-
tum states while halting the execution. A network process,
realized as a kernel process, handles entanglement requests
submitted by user processes. It uses the network stack [22,
34], including a network schedule that can be determined by
a time-division multiple access (TDMA) controller [23] to
coordinate entanglement generation with the rest of the net-
work. After interacting with the QDevice it eventually returns
entangled qubits to user processes.

To increase utility, QNodeOS allows multiple programs to
be run concurrently. Similar to classical memory management
systems [35], a quantum memory management unit (QMMU)
on the QNPU manages qubit allocations from processes, and
translates virtual qubit addresses in quantum blocks to phys-
ical addresses in the QDevice. Entanglement generation be-
tween different pairs of processes at remote nodes are distin-
guished by Entanglement Request (ER) sockets, inspired by
classical sockets.

4 Demonstrations

We validate our architecture by implementing QNodeOS on a
two-node (client and server) setup of NV centers using one
qubit per node. We show the first successful execution of an
arbitrary (not preloaded) execution of a quantum network
application in high-level software on quantum processors.
We also validate QNodeOS’s multitasking capability by the
first concurrent execution of two quantum applications on a
quantum network: a Delegated Quantum Computation (DQC)
application, and a single-node local gate tomography (LGT)
application on the client. We observe interleaved execution of
DQC quantum blocks and LGT quantum blocks on the client
node. We verify that interleaving different programs does not
decrease the quantum result (fidelity) of the applications. We
further test multitasking by scaling up the number of programs
executed concurrently, up to 5 DQC and 5 LGT programs at
the same time. The interleaved execution of blocks of different
programs increases quantum device utilization compared to
the same scenario but with multitasking disabled.

2

References

[1] H. J. Kimble. “The Quantum Internet”. In: Nature
453.7198 (2008), pp. 1023–1030. DOI: 10 . 1038 /
nature07127.

[2] S. Wehner, D. Elkouss, and R. Hanson. “Quantum In-
ternet: A Vision for the Road Ahead”. In: Science
362.6412 (2018), pp. 1–9. DOI: 10.1126/science.
aam9288.

[3] R. van Meter. Quantum Networking. John Wiley and
Sons, Ltd, 2014. DOI: 10.1002/9781118648919.

[4] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons,
A. Zeilinger, and P. Walther. “Demonstration of Blind
Quantum Computing”. In: Science 335.6066 (2012),
pp. 303–308. DOI: 10.1126/science.1214707.

[5] P. Drmota, D. Nadlinger, D. Main, B. Nichol, E. Ain-
ley, D. Leichtle, A. Mantri, E. Kashefi, R. Srinivas, G.
Araneda, et al. “Verifiable blind quantum computing
with trapped ions and single photons”. In: Physical Re-
view Letters 132.15 (2024). Publisher: APS, p. 150604.
DOI: 10.1103/PhysRevLett.132.150604.

[6] D. Nadlinger. “Device-independent key distribution
between trapped-ion quantum network nodes”. PhD
thesis. University of Oxford, 2022.

[7] S. Hermans, M. Pompili, H. Beukers, S. Baier, J. Bor-
regaard, and R. Hanson. “Qubit teleportation between
non-neighbouring nodes in a quantum network”. In:
Nature 605.7911 (2022), pp. 663–668. DOI: 10.1038/
s41586-022-04697-y.

[8] M. Iuliano, M.-C. Slater, A. J. Stolk, M. J. Weaver, T.
Chakraborty, E. Loukiantchenko, G. C. d. Amaral, N.
Alfasi, M. O. Sholkina, W. Tittel, et al. “Qubit telepor-
tation between a memory-compatible photonic time-
bin qubit and a solid-state quantum network node”.
In: arXiv preprint arXiv:2403.18581 (2024). DOI: 10.
48550/arXiv.2403.18581.

[9] D. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and
C. Monroe. “Quantum teleportation between distant
matter qubits”. In: Science 323.5913 (2009). Publisher:
American Association for the Advancement of Science,
pp. 486–489. DOI: 10.1126/science.1167209.

[10] S. Langenfeld, S. Welte, L. Hartung, S. Daiss, P.
Thomas, O. Morin, E. Distante, and G. Rempe. “Quan-
tum teleportation between remote qubit memories with
only a single photon as a resource”. In: Physical Re-
view Letters 126.13 (2021). Publisher: APS, p. 130502.
DOI: 10.1103/PhysRevLett.126.130502.

[11] W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S.
Blok, T. H. Taminiau, M. J. Tiggelman, R. N. Schouten,
M. Markham, D. J. Twitchen, et al. “Unconditional
quantum teleportation between distant solid-state quan-
tum bits”. In: Science 345.6196 (2014). Publisher:
American Association for the Advancement of Science,
pp. 532–535. DOI: 10.1126/science.1253512.

[12] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Rein-
hold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. Devoret,
L. Jiang, and R. Schoelkopf. “Deterministic telepor-
tation of a quantum gate between two logical qubits”.
In: Nature 561.7723 (2018). Publisher: Nature Publish-
ing Group UK London, pp. 368–373. DOI: 10.1038/
s41586-018-0470-y.

[13] A. Broadbent, J. Fitzsimons, and E. Kashefi. “Universal
Blind Quantum Computation”. In: FOCS. IEEE, 2009,
pp. 517–526. DOI: 10.1109/FOCS.2009.36.

[14] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko,
J. Wrachtrup, and L. C. Hollenberg. “The nitrogen-
vacancy colour centre in diamond”. In: Physics Reports
528 (2013). DOI: 10.1016/j.physrep.2013.02.
001.

[15] L. Childress and R. Hanson. “Diamond NV centers for
quantum computing and quantum networks”. In: MRS
bulletin 38.2 (2013), pp. 134–138. DOI: 10.1557/mrs.
2013.20.

[16] D. Fioretto. “Towards a flexible source for indistin-
guishable photons based on trapped ions and cavities”.
PhD thesis. University of Innsbruck, 2020.

[17] K. Bertels, A. Sarkar, T. Hubregtsen, M. Serrao, A. A.
Mouedenne, A. Yadav, A. Krol, I. Ashraf, and C. G.
Almudever. “Quantum computer architecture toward
full-stack quantum accelerators”. In: IEEE Transac-
tions on Quantum Engineering 1 (2020). Publisher:
IEEE, pp. 1–17. DOI: 10.1109/TQE.2020.2981074.

[18] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van
Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen,
V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J.
Vlothuizen, R. N. Schouten, C. G. Almudever, L. Di-
Carlo, and K. Bertels. “eQASM: An Executable Quan-
tum Instruction Set Architecture”. In: HPCA. IEEE,
2019, pp. 224–237. DOI: 10 . 1109 / HPCA . 2019 .
00040.

[19] E. Giortamis, F. Romão, N. Tornow, and P. Bhato-
tia. “QOS: A Quantum Operating System”. In: arXiv
preprint arXiv:2406.19120 (2024). DOI: 10.48550/
arXiv.2406.19120.

[20] W. Kong, J. Wang, Y. Han, Y. Wu, Y. Zhang, M. Dou, Y.
Fang, and G. Guo. “Origin Pilot: a Quantum Operating
System for Effecient Usage of Quantum Resources”.
2021. arXiv: 2105.10730. URL: https://arxiv.
org/abs/2105.10730.

3

https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1002/9781118648919
https://doi.org/10.1126/science.1214707
https://doi.org/10.1103/PhysRevLett.132.150604
https://doi.org/10.1038/s41586-022-04697-y
https://doi.org/10.1038/s41586-022-04697-y
https://doi.org/10.48550/arXiv.2403.18581
https://doi.org/10.48550/arXiv.2403.18581
https://doi.org/10.1126/science.1167209
https://doi.org/10.1103/PhysRevLett.126.130502
https://doi.org/10.1126/science.1253512
https://doi.org/10.1038/s41586-018-0470-y
https://doi.org/10.1038/s41586-018-0470-y
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1109/TQE.2020.2981074
https://doi.org/10.1109/HPCA.2019.00040
https://doi.org/10.1109/HPCA.2019.00040
https://doi.org/10.48550/arXiv.2406.19120
https://doi.org/10.48550/arXiv.2406.19120
https://arxiv.org/abs/2105.10730
https://arxiv.org/abs/2105.10730
https://arxiv.org/abs/2105.10730

[21] P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N.
Schouten, R. F. L. Vermeulen, D. J. Twitchen, M.
Markham, and R. Hanson. “Deterministic Delivery of
Remote Entanglement on a Quantum Network”. In:
Nature 558.7709 (2018), pp. 268–273. DOI: 10.1038/
s41586-018-0200-5.

[22] A. Dahlberg, M. Skrzypczyk, T. Coopmans, L.
Wubben, F. Rozpędek, M. Pompili, A. Stolk, P.
Pawełczak, R. Knegjens, J. de Oliveira Filho, R. Han-
son, and S. Wehner. “A Link Layer Protocol for Quan-
tum Networks”. In: SIGCOMM. ACM, 2019, pp. 159–
173. DOI: 10.1145/3341302.3342070.

[23] M. Skrzypczyk and S. Wehner. “An Architecture for
Meeting Quality-of-Service Requirements in Multi-
User Quantum Networks”. 2021. arXiv: 2111.13124.

[24] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beuk-
ers, P. C. Humphreys, R. N. Schouten, R. F. L. Ver-
meulen, M. J. Tiggelman, L. dos Santos Martins, B.
Dirkse, S. Wehner, and R. Hanson. “Realization of a
Multinode Quantum Network of Remote Solid-State
Qubits”. In: Science 372.6539 (2021), pp. 259–264.
DOI: 10.1126/science.abg1919.

[25] P. Drmota, D. Main, D. Nadlinger, B. Nichol, M. We-
ber, E. Ainley, A. Agrawal, R. Srinivas, G. Araneda, C.
Ballance, et al. “Robust quantum memory in a trapped-
ion quantum network node”. In: Physical Review Let-
ters 130.9 (2023). Publisher: APS, p. 090803. DOI:
10.1103/PhysRevLett.130.090803.

[26] V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky,
H. Hainzer, and B. P. Lanyon. “Light-matter entangle-
ment over 50 km of optical fibre”. In: npj Quantum
Information 5.1 (2019). Publisher: Nature Publishing
Group UK London, p. 72. DOI: 10.1038/s41534-
019-0186-3.

[27] J. D. McCullough, K. H. Speierman, and F. W. Zurcher.
“A design for a multiple user multiprocessing sys-
tem”. In: Proceedings of the November 30–December
1, 1965, fall joint computer conference, part I. 1965,
pp. 611–617. DOI: 10.1145/1463891.1463957.

[28] J. B. Dennis. “Segmentation and the design of multipro-
grammed computer systems”. In: Journal of the ACM
(JACM) 12.4 (1965). Publisher: ACM New York, NY,
USA, pp. 589–602. DOI: 10.1145/321296.321310.

[29] A. Dahlberg, B. van der Vecht, C. Delle Donne, M.
Skrzypczyk, I. te Raa, W. Kozlowski, and S. Wehner.
“NetQASM—A Low-Level Instruction Set Architec-
ture for Hybrid Quantum–Classical Programs in a
Quantum Internet”. In: Quantum Science and Tech-
nology 7.3 (2022), p. 035023. DOI: 10.1088/2058-
9565/ac753f.

[30] M. Teller, V. Messerer, K. Schüppert, Y. Zou, D. A.
Fioretto, M. Galli, P. C. Holz, J. Reichel, and T. E.
Northup. “Integrating a fiber cavity into a wheel trap
for strong ion–cavity coupling”. In: AVS Quantum Sci-
ence 5.1 (2023). DOI: 10.1116/5.0121534.

[31] M. Teller, D. A. Fioretto, P. C. Holz, P. Schindler, V.
Messerer, K. Schüppert, Y. Zou, R. Blatt, J. Chiaverini,
J. Sage, et al. “Heating of a trapped ion induced by di-
electric materials”. In: Physical Review Letters 126.23
(2021), p. 230505. DOI: 10.1103/PhysRevLett.126.
230505.

[32] M. Pompili, C. Delle Donne, I. te Raa, B. van der Vecht,
M. Skrzypczyk, G. M. Ferreira, L. de Kluijver, A. J.
Stolk, S. L. N. Hermans, P. Pawełczak, W. Kozlowski,
R. Hanson, and S. Wehner. “Experimental Demonstra-
tion of Entanglement Delivery Using a Quantum Net-
work Stack”. In: npj Quantum Information 8.1 (2022),
p. 121. DOI: 10.1038/s41534-022-00631-2.

[33] C. L. Liu and J. W. Layland. “Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environ-
ment”. In: J. ACM 20.1 (1973), pp. 46–61. DOI: 10.
1145/321738.32174.

[34] W. Kozlowski, A. Dahlberg, and S. Wehner. “Design-
ing a Quantum Network Protocol”. In: CoNEXT. ACM,
2020, pp. 1–16. DOI: 10.1145/3386367.3431293.

[35] J. L. Peterson and A. Silberschatz. Operating system
concepts. Addison-Wesley Longman Publishing Co.,
Inc., 1985. DOI: 10.5555/3526.

4

https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1145/3341302.3342070
https://arxiv.org/abs/2111.13124
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1103/PhysRevLett.130.090803
https://doi.org/10.1038/s41534-019-0186-3
https://doi.org/10.1038/s41534-019-0186-3
https://doi.org/10.1145/1463891.1463957
https://doi.org/10.1145/321296.321310
https://doi.org/10.1088/2058-9565/ac753f
https://doi.org/10.1088/2058-9565/ac753f
https://doi.org/10.1116/5.0121534
https://doi.org/10.1103/PhysRevLett.126.230505
https://doi.org/10.1103/PhysRevLett.126.230505
https://doi.org/10.1038/s41534-022-00631-2
https://doi.org/10.1145/321738.32174
https://doi.org/10.1145/321738.32174
https://doi.org/10.1145/3386367.3431293
https://doi.org/10.5555/3526

Generation of long-range entanglement enhanced by error
detection

Abstract submission to NSF workshop on quantum operating systems and real-time control

Haoran Liao∗1, Gavin S. Hartnett1, Ashish Kakkar1, Pranav S. Mundada1,
Michael J. Biercuk1, and Yuval Baum1

1Q-CTRL, Los Angeles, CA USA and Sydney, NSW Australia

1 Extended abstract

Over the recent years, QEC research across the quantum computing community led to a great

number of impressive demonstrations [Acharya et al., 2023, Gupta et al., 2024, Bluvstein et al.,

2024,Acharya et al., 2024]. This includes validation of most of the underlying primitives of the

QEC protocol, such as developing e�cient encodings, the ability to repeatedly identify errors and

to perform active corrections, and even the ability to deliver net improvements to logical qubit

lifetime or the quality of logical operations. However, implementing QEC remains costly, and

limited to small scales due to rather limited number of physical qubits available currently. While

QEC is expected to deliver some net benefits, such benefits are not likely to be competitive in

the near term over alternate techniques that do not require significant overhead. In light of these,

primitives (sub-routines) of QEC may be borrowed and applied in low-overhead, physical levels to

improve system performance in the near term. In this work, we focus on near-term implementations

of two core primitives of QEC—error detection and gate teleportation.

In the first part of the paper, we demonstrate the utility of error detection by performing

sparse parity checks of local stabilizers on the generation of Greenberger-Horne-Zeilinger (GHZ)

states. The core idea behind this method [Mooney et al., 2021] is to utilize a small number of

ancilla qubits (flags) to indicate the presence of an error. Such error detection methods leverage

local symmetries among the physical qubits. While in the context of QEC, such symmetries

arise naturally as part of the physical-to-logical encoding, such symmetries can also arise on the

physical level, for example, as a symmetry of the state we wish to generate or the Hamiltonian

we wish to simulate. The flags, checking the parity of data qubits, are chosen to minimize the

number of required entangling gates. While the method was used by Mooney et al. [Mooney et al.,

2021] to generate GHZ states exhibiting genuine multi-partite entanglement (GME) as large as 25

∗haoran.liao@q-ctrl.com

1

qubits, we show that the combination of an e↵ective error suppression pipeline [Mundada et al.,

2023,Hartnett et al., 2024] with such a limited error detection scheme allows to observe GME for

GHZ states of up to 70 qubits, verified in terms of multiple-quantum coherence (MQC) fidelity.

These results demonstrate the e↵ectiveness of hardware-e�cient error detection schemes, where

the benefit gains due to the detection of bitflips and amplitude-damping errors, greatly exceed

the quality degradation due to added overhead, enabling the largest GHZ state generation on any

quantum processors reported to date.

In the second part of the paper, we tackle the challenge of generating entanglement at a distance,

in particular, the generation of long-range CNOT gates. Long-range entangling operations are

highly desirable for QEC protocols on low-connectivity device topologies, particularly for non-

local QEC codes, such as quantum low-density parity-check (qLDPC) codes [Bravyi et al., 2024,

Berthusen et al., 2024]. Moreover, the availability of non-local operations may shorten the path

towards large-scale implementation of algorithms such as quantum Fourier transform and fermionic

simulations [Holmes et al., 2020]. Engineering long-range entangling operations with high fidelity

remains a significant and open problem, especially in the push towards QEC.

We introduce a novel protocol for generating a long-range CNOT gate, partially based on local

operations and classical communications (LOCC) (mid-circuit measurement feedforward). The

protocol we designed follows three principle guidelines: (1) It provides a trade-o↵ between mea-

surements and two-qubit gates, which better suits near-term hardware; (2) it enables e�cient error

detection, which allows for erroneous shots (samples) to be discarded; (3) it is more amenable to

readout error mitigation in post-processing if allowed. We demonstrate our protocol to implement

a long-range CNOT gate between two qubits separated by tens of physical qubits in the quantum

device. We achieve & 90% average gate fidelity of the long-range CNOT across up to 20 qubits

in shot-by-shot experiments, and up to 30 qubits in post-processing with additional readout error

mitigation. Our protocol for long-range CNOT gate significantly outperforms a recently proposed

dynamic-circuit (mid-circuit measurement feedforward) protocol [Bäumer et al., 2024], which in

turn significantly outperforms the baseline SWAP protocol. In addition, we provide an alternative,

first-principle derivation of the dynamic-circuit protocol for long-range CNOT, which unifies it into

a more general framework for teleporting control-U gates. This general framework also include

our novel protocol for long-range CNOT mentioned above.

References

[Acharya et al., 2024] Acharya, R., Aghababaie-Beni, L., Aleiner, I., Andersen, T. I., Ansmann,

M., Arute, F., Arya, K., Asfaw, A., Astrakhantsev, N., Atalaya, J., et al. (2024). Quantum

error correction below the surface code threshold. arXiv preprint arXiv:2408.13687.

[Acharya et al., 2023] Acharya, R., Aleiner, I., Allen, R., Andersen, T. I., Ansmann, M., Arute,

F., Arya, K., Asfaw, A., Atalaya, J., Babbush, R., et al. (2023). Suppressing quantum errors by

scaling a surface code logical qubit. Nature, 614(7949):676–681.

2

[Bäumer et al., 2024] Bäumer, E., Tripathi, V., Wang, D. S., Rall, P., Chen, E. H., Majumder,

S., Seif, A., and Minev, Z. K. (2024). E�cient long-range entanglement using dynamic circuits.

PRX Quantum, 5(3):030339.

[Berthusen et al., 2024] Berthusen, N., Devulapalli, D., Schoute, E., Childs, A. M., Gullans, M. J.,

Gorshkov, A. V., and Gottesman, D. (2024). Toward a 2d local implementation of quantum

ldpc codes. arXiv:2404.17676.

[Bluvstein et al., 2024] Bluvstein, D., Evered, S. J., Geim, A. A., Li, S. H., Zhou, H., Manovitz,

T., Ebadi, S., Cain, M., Kalinowski, M., Hangleiter, D., et al. (2024). Logical quantum processor

based on reconfigurable atom arrays. Nature, 626(7997):58–65.

[Bravyi et al., 2024] Bravyi, S., Cross, A. W., Gambetta, J. M., Maslov, D., Rall, P., and Yo-

der, T. J. (2024). High-threshold and low-overhead fault-tolerant quantum memory. Nature,

627(8005):778–782.

[Gupta et al., 2024] Gupta, R. S., Sundaresan, N., Alexander, T., Wood, C. J., Merkel, S. T.,

Healy, M. B., Hillenbrand, M., Jochym-O’Connor, T., Wootton, J. R., Yoder, T. J., et al.

(2024). Encoding a magic state with beyond break-even fidelity. Nature, 625(7994):259–263.

[Hartnett et al., 2024] Hartnett, G. S., Barbosa, A., Mundada, P. S., Hush, M., Biercuk, M. J.,

and Baum, Y. (2024). Learning to rank quantum circuits for hardware-optimized performance

enhancement. arXiv:2404.06535.

[Holmes et al., 2020] Holmes, A., Johri, S., Guerreschi, G. G., Clarke, J. S., and Matsuura, A. Y.

(2020). Impact of qubit connectivity on quantum algorithm performance. Quantum Science and

Technology, 5(2):025009.

[Mooney et al., 2021] Mooney, G. J., White, G. A., Hill, C. D., and Hollenberg, L. C. (2021).

Generation and verification of 27-qubit greenberger-horne-zeilinger states in a superconducting

quantum computer. Journal of Physics Communications, 5(9):095004.

[Mundada et al., 2023] Mundada, P. S., Barbosa, A., Maity, S., Wang, Y., Merkh, T., Stace, T.,

Nielson, F., Carvalho, A. R., Hush, M., Biercuk, M. J., et al. (2023). Experimental benchmarking

of an automated deterministic error-suppression workflow for quantum algorithms. Physical

Review Applied, 20(2):024034.

3

Quantum Noise Effects on QAOA for
Reconfigurable Microgrid Networks

Betis Baheri⇤, Yan Li†, Wei Xu‡, and Qiang Guan⇤

⇤Kent State University, Kent, OH USA
† The Pennsylvania State University, PA, USA
‡ Brookhaven National Laboratory, NY, USA

Abstract—The Quantum Approximate Optimization Algorithm

(QAOA) has gained attention as a potential solution for com-

binatorial optimization problems on near-term noisy quantum

computers. In the context of networked microgrids (NMs), QAOA

is used to optimize maximum power exchange by framing it as

a Max-Cut problem. While promising, the effects of quantum

noise on QAOA’s performance on real Noisy Intermediate-Scale

Quantum (NISQ) devices remain largely unexplored. This study

thoroughly analyzes the impact of different types of quantum

noise on QAOA’s effectiveness in NMs, comparing results with

idealized simulations. The findings open new avenues for re-

search, emphasizing the need to improve the reliability, scala-

bility, and error mitigation of quantum algorithms in practical

settings.

I. INTRODUCTION

In recent years, microgrids have become a recognized solu-
tion for improving energy sustainability [7]. A key challenge in
networked microgrids (NMs), particularly reconfigurable ones,
is optimizing maximum power exchange, which quantifies the
dependence of each microgrid on its neighboring systems. This
problem can be modeled as a Max-Cut problem [4], with the
goal of maximizing power exchange efficiency by identifying
the optimal cut value.

Two main approaches exist for solving the Max-Cut prob-
lem: relaxation and heuristic methods. Relaxation methods
simplify the problem constraints, with algorithms like the
Geomans-Williamson (GW) [5] achieving an expected cutting
ratio of 0.878 by mapping discrete variables into vectors. The
rank-two relaxation algorithm [2], by contrast, projects the
discrete variables onto the unit circle in R2, demonstrating
superior approximation quality relative to the GW algorithm.
Extensions of these techniques, including the rank-k relaxation
method, among others, are documented as striving for im-
proved approximations without surpassing the GW algorithm’s
efficacy. Heuristic methods, such as the simple iterative (SI)
algorithm [8], divisive strategies for dense graphs, and La-
grangian relaxation [1], offer effective alternatives but often
require high computational resources.

The Quantum Approximate Optimization Algorithm
(QAOA) [6] has been shown to be adaptable for optimizing
power exchange in NMs by approximating a Max-Cut
solution. Research indicates that QAOA’s performance can be
significantly improved by optimizing the algorithm’s angle

parameters and normalizing edge weights [3], [9], and its
efficacy increases with more layers (p-values). However, the
selection of classical optimizers remains a challenge.

This study explores how noise in Noisy Intermediate-Scale
Quantum (NISQ) devices affects QAOA’s ability to solve the
Max-Cut problem in NMs. By analyzing noise sources such
as relaxation, dephasing, and gate errors, the research reveals
that while increasing p-values generally enhances QAOA’s
performance, noise constrains these gains. The findings high-
light the need for further investigation into QAOA’s scalability,
reliability, and error mitigation strategies when implemented
on real quantum devices.

II. QAOA NOISE MODEL

We used a noise model for quantum computations to simu-
late QAOA under quantum noise, accounting for gate errors,
relaxation, and dephasing through depolarizing, amplitude
damping, and phase damping channels. The input density
matrix undergoes ideal gate operations before noise effects
are applied, with the operator-sum method used to capture the
impact of noise.

In real quantum computers, noise, especially in the ZZ-
interaction (involving CNOT and RZ gates), affects QAOA
by altering qubit amplitudes and introducing phase errors.
These inaccuracies disrupt the solution space. Decoherence
also causes errors when the Hamiltonian’s operation exceeds
qubit coherence times. We simulated a network microgrid
power exchange problem (p=1) with both noiseless and noisy
qubits to assess these effects.

III. RESULT OF RNMS WITH QAOA

To evaluate the robustness and effectiveness of the Quantum
Approximate Optimization Algorithm (QAOA) in networked
microgrids (NMs), this study began by replicating previous ex-
perimental results from [6]. Initially, QAOA was tested without
any noise models to establish a baseline for comparison.

The study advanced by incorporating a gate noise model
focused on Pauli-Z operators to examine the effects of quan-
tum noise on QAOA’s performance. Using the quantum qt
package, the model enabled a detailed analysis of how noise
alters algorithmic results. The comparative analysis, shown

1

in Figure 1, highlights the algorithm’s sensitivity to noise-
induced deviations.

Fig. 1: Quantum Environment W/WO Error Mitigation, The
red bars shows the final probability w.r.t ratio without error
mitigation and blue lines shows the error mitigated result

In response to the challenges posed by quantum noise,
the study explored noise mitigation strategies using Qiskit
API version 0.46. This phase was crucial for assessing the
effectiveness of noise reduction techniques in quantum com-
puting applications for networked microgrids (NMs). Figure
2 visually compares QAOA’s performance before and after
noise mitigation, demonstrating the potential for improving
the algorithm’s resilience to noise.

However, QAOA remains highly sensitive to even small
noise variations, particularly in NMs, as evidenced by sig-
nificant changes in the algorithm’s output. This highlights
the critical need for precise noise modeling and mitigation
strategies.

In the final part of the study, QAOA was implemented
in the Qiskit environment to compare the quasi-probability
distribution of a two-qubit test case with the ideal probabil-
ity distribution. Figures 2a and 2b illustrate the differences
between the ideal and noise-mitigated contexts, emphasizing
both the impact of quantum noise and the effectiveness of
mitigation techniques in narrowing the gap between theoretical
expectations and real-world challenges.

This study, from replicating experimental results to applying
innovative noise mitigation techniques, makes a valuable con-
tribution to the discussion on QAOA’s resilience to quantum
noise. By analyzing the algorithm’s performance across vari-
ous contexts, it highlights the key relationship between design,
noise modeling, and mitigation strategies, offering insights for
improving QAOA’s robustness and effectiveness in quantum
computing applications for network microgrids.

IV. CONCLUSION

This study provides a detailed analysis of the Quantum
Approximate Optimization Algorithm (QAOA) for solving

(a) Probabilities w.r.t. ratio Noisy Environment

(b) Quasi-Probabilities of Mitigated Noisy Environment

Fig. 2: Comparision of expected solution Probabilities to
Qiskit Mitigated Quasi-Probabilities

the MaxCut problem in Networked Microgrids (NMs) under
realistic noise conditions in superconducting qubits. Results
show that even minimal quantum noise can significantly im-
pact the expected cut value. Basic noise mitigation techniques
using the Qiskit framework yielded promising results, but
further research is needed to explore advanced mitigation
strategies and assess the scalability and effectiveness of QAOA
in practical quantum computing environments.

REFERENCES

[1] H. Alperin and I. Nowak, “Lagrangian smoothing heuristics for max-cut,”
Journal of Heuristics, vol. 11, no. 5, pp. 447–463, Dec 2005. [Online].
Available: https://doi.org/10.1007/s10732-005-3603-z

[2] S. Burer, R. D. C. Monteiro, and Y. Zhang, “Rank-two relaxation
heuristics for max-cut and other binary quadratic programs,” SIAM
Journal on Optimization, vol. 12, no. 2, pp. 503–521, 2002. [Online].
Available: https://doi.org/10.1137/S1052623400382467

[3] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” 2014.

[4] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified
np-complete problems,” in Proceedings of the Sixth Annual ACM
Symposium on Theory of Computing, ser. STOC ’74. New York, NY,
USA: Association for Computing Machinery, 1974, p. 47–63. [Online].
Available: https://doi.org/10.1145/800119.803884

[5] M. X. Goemans and D. P. Williamson, “Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite

2

programming,” J. ACM, vol. 42, no. 6, p. 1115–1145, nov 1995. [Online].
Available: https://doi.org/10.1145/227683.227684

[6] H. Jing, Y. Wang, and Y. Li, “Interoperation analysis of reconfigurable
networked microgrids through quantum approximate optimization al-
gorithm,” in 2022 IEEE Power & Energy Society General Meeting
(PESGM), 2022, pp. 1–5.

[7] Y. Li, P. Zhang, and P. B. Luh, “Formal analysis of networked microgrids
dynamics,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp.
3418–3427, 2018.

[8] S. Shao, D. Zhang, and W. Zhang, “A simple iterative algorithm for
maxcut,” 2023.

[9] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum
approximate optimization algorithm: Performance, mechanism, and
implementation on near-term devices,” Phys. Rev. X, vol. 10, p.
021067, Jun 2020. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevX.10.021067

3

Quantum error correction experiments decoded in real time and with low-latency response
on a superconducting quantum computer

Laura Caune, Luka Skoric, Nick S. Blunt, Archibald Ruban, Jimmy McDaniel, Joseph A. Valery, Andrew D.
Patterson, Alexander V. Gramolin, Joonas Majaniemi, Kenton M. Barnes, Tomasz Bialas, Okan Buğdaycı,

Ophelia Crawford, György P. Gehér, Hari Krovi, Elisha Matekole, Canberk Topal, Stefano Poletto, Michael
Bryant, Kalan Snyder, Neil I. Gillespie, Glenn Jones, Kauser Johar, Earl T. Campbell, Alexander D. Hill

Quantum error correction (QEC) will be essential to perform quantum computations that require
hundreds of qubits and over a billion operations1–4, which are susceptible to errors. QEC schemes repeatedly
generate data characterising quantum errors5–7 and use this data in classical algorithms, known as decoders
to identify errors that occurred during quantum computation. Leading proposals for implementing fault-
tolerant non-Clifford gates, for example magic state injection8–10, require logical branching – logical operation
conditional on a corrected observable, which is computed by combining the measured value of the observable
and the logical correction returned by the decoder. Since logical branching happens during circuit execution
and depends on the decoding result, this places throughput and latency requirements on the decoding
process. In this work, we demonstrate fast, low-latency full-decoding response time by decoding with real-time
FPGA decoder11 integrated into Rigetti’s superconducting qubit device Ankaa-2™ control system.

The rate at which the decoder processes data (the throughput) needs to be greater than the rate at
which data is generated, which on superconducting devices can be as fast as one data extraction round per
1 µs12–15. This is necessary to avoid the backlog problem5, i.e. an exponential slowdown of the quantum
computation due to amassing a growing backlog of data at each decoding iteration. A second key parameter
to optimize is the full-decoding response time, which is the time between the final data extraction round
and the application of a logical conditional gate. It includes the decoding time as well as the communication
and control latency times to send the data to and from the decoder. The full-decoding response time can
be a significant bottleneck for operations involving logical conditional gates. As a result, it directly affects
the logical clock rate (i.e. the inverse of the time required to perform a single logical non-Clifford gate),
another QEC metric that determines the execution speed of fault-tolerant algorithms. Reducing both the
decoding time and the communication and control latency to minimize the full-decoding response time is
key to ensure that complex quantum algorithms are executed within reasonable times. For example, when
estimating that 2048 bit RSA integers can be factored in 8 hours using 20 million noisy superconducting
qubits, the authors assume a full-decoding response time within 10 µs1. Real-time decoding has been
experimentally demonstrated but with either full-decoding response time far exceeding the 10 µs goal16;17

or using an unscalable lookup table approach16;18–20.

Figure 1: Logical error probabilities for the stability-8
experiment executed on the Ankaa-2™ device as a
function of number of decoding rounds.

Here, we present a real-time decoded stability
experiment21 on 8 qubits (stability-8) with logical
branching that measures the full-decoding response
time. We decode with a scalabale FPGA implementa-
tion of a Collision Clustering decoder11, integrated
into Rigetti’s Ankaa-2™ superconducting device’s
control system. Surface code operations such as lat-
tice surgery22;23, logical qubit patch movement10

or the logical Hadamard gate24;25 all involve mea-
suring products of stabilizers. In these examples, in-
correctly measuring the stabilizer product can intro-
duce a logical error. For instance, in lattice surgery,
this stabilizer product determines the logical branch-
ing decisions when performing non-Clifford gates,
with a logical error meaning the wrong branch is
followed. The stability experiment21 is designed to
test the ability to protect against these logical errors
and in this work acts as a smaller scale simulation
of logical branching experiments.

Figure 2: Mean decoding time per decoding round for
the stability-8 experiment, decoded using the real-time
FPGA decoder run at 156.25 MHz frequency.

In Fig. 1, we show that on Ankaa-2™ using the
real-time FPGA decoder the physical error rates are
low enough to demonstrate logical error probability
suppression with an increasing number of decod-
ing rounds, which is the signature of a successful
stability experiment. The logical error probabilities
decrease from around (28.1± 0.1)% at 5 decoding
rounds to around (20.5 ± 00.1)% at 25 decoding
rounds. We achieve the lowest logical error proba-
bility, (17.6± 0.1)%, with minimum-weight perfect
matching (MWPM) decoder leveraging soft infor-
mation analysis and a decoding graph constructed
with the pairwise correlation method26–30.

Fig. 2 shows that our mean decoding time per
round ranges from 0.44 µs when decoding 5 rounds
to 0.79 µs when decoding 25 rounds. These values
remain below the 1 µs threshold for data genera-
tion on a superconducting qubit device, providing
strong evidence that the backlog problem will be
avoided when operated as a streaming decoder31–33.

Figure 3: Full-decoding response time measurements
as a function of number of rounds.

We also perform a circuit that conditionally ap-
plies a physical X gate based on the outcome of
decoding the stability experiment. This allows us to
measure the full-decoding response time as a func-
tion of the number of QEC rounds (see Fig. 3). For
a 9 measurements rounds experiment, we find the
full-decoding response time to be 9.6 µs, including
6.5 µs decoding time and 3.1 µs communication and
control latencies. We note that while the majority
of the full-decoding response time can be attributed
to the decoding time for a larger number of rounds,
there is a significant additional latency incurred by
the control system delays. 1.4 µs is the time spent
waiting for the final readout results to reach the
decoder, with the remaining 1-1.7 µs consisting of
additional control system logic: collecting the mea-
surements into packets to be sent to the decoder,
sending them via the wishbone bus, receiving re-
sults and performing the conditional logic. Thanks
to the FPGA implementation of our fast decoder
and its integration into the Ankaa-2™ system, in the
small-distance studies reported in this work we manage to keep the full-decoding response time within the
order of d µs, where d is the code distance. Maintaining this condition will be crucial when scaling up d, as
it will ensure that this response time will not be a critical limiting factor for the logical clock speed when
implementing lattice surgery operations32.

In the future, fault-tolerant quantum algorithms that have the potential to outperform classical algorithms
will require codes utilizing a large number of operations1–4;10. To support this, the FPGA decoder should be
updated to be a streaming decoder31–33. To improve the accuracy of decoding results, we expect future
FPGA implementations to enable updates to the decoding graph in real-time, allowing for soft information
or leakage-aware decoding. Such advances to decoding and improvements to the device combined with
the throughput and latency developed in this work, will unlock the next generation of experiments that
go beyond purely keeping logical qubits alive and into demonstrating building blocks of fault-tolerant
computation, such as lattice surgery and magic state teleportation.

References
[1] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits,” Publisher:

Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.
[2] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Proceedings of the National Academy of Sciences

114, 7555 (2017), publisher: Proceedings of the National Academy of Sciences.
[3] N. S. Blunt, J. Camps, O. Crawford, R. Izsák, S. Leontica, A. Mirani, A. E. Moylett, S. A. Scivier, C. Sünderhauf,

P. Schopf, J. M. Taylor, and N. Holzmann, Journal of Chemical Theory and Computation 18, 7001 (2022),
publisher: American Chemical Society.

[4] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean, N. Wiebe, and R. Babbush, PRX Quantum 2, 030305
(2021), publisher: American Physical Society.

[5] B. M. Terhal, Reviews of Modern Physics 87, 307 (2015), publisher: American Physical Society.
[6] D. Gottesman, “Stabilizer Codes and Quantum Error Correction,” (1997), arXiv:quant-ph/9705052.
[7] E. T. Campbell, B. M. Terhal, and C. Vuillot, Nature 549, 172 (2017), publisher: Nature Publishing Group.
[8] S. Bravyi and J. Haah, Physical Review A 86, 052329 (2012), publisher: American Physical Society.
[9] S. Bravyi and A. Kitaev, Physical Review A 71, 022316 (2005), publisher: American Physical Society.
[10] D. Litinski, Quantum 3, 128 (2019), arXiv:1808.02892 [cond-mat, physics:quant-ph].
[11] B. Barber, K. M. Barnes, T. Bialas, O. Buğdaycı, E. T. Campbell, N. I. Gillespie, K. Johar, R. Rajan, A. W. Richardson,

L. Skoric, C. Topal, M. L. Turner, and A. B. Ziad, “A real-time, scalable, fast and highly resource efficient decoder
for a quantum computer,” (2023), arXiv:2309.05558 [quant-ph].

[12] F. Battistel, C. Chamberland, K. Johar, R. W. J. Overwater, F. Sebastiano, L. Skoric, Y. Ueno, and M. Usman, Nano
Futures 7, 032003 (2023), publisher: IOP Publishing.

[13] J. P. G. van Dijk, E. Charbon, and F. Sebastiano, Microprocessors and Microsystems 66, 90 (2019).
[14] E. Jeffrey, D. Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth,

A. Megrant, P. J. J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis,
Physical Review Letters 112, 190504 (2014), publisher: American Physical Society.

[15] R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, R. Babbush,
D. Bacon, J. C. Bardin, J. Basso, A. Bengtsson, S. Boixo, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton,
B. B. Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, Y. Chen, Z. Chen, B. Chiaro, J. Cogan, R. Collins,
P. Conner, W. Courtney, A. L. Crook, B. Curtin, D. M. Debroy, A. Del Toro Barba, S. Demura, A. Dunsworth,
D. Eppens, C. Erickson, L. Faoro, E. Farhi, R. Fatemi, L. Flores Burgos, E. Forati, A. G. Fowler, B. Foxen, W. Giang,
C. Gidney, D. Gilboa, M. Giustina, A. Grajales Dau, J. A. Gross, S. Habegger, M. C. Hamilton, M. P. Harrigan,
S. D. Harrington, O. Higgott, J. Hilton, M. Hoffmann, S. Hong, T. Huang, A. Huff, W. J. Huggins, L. B. Ioffe, S. V.
Isakov, J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, K. Kechedzhi, J. Kelly, T. Khattar, M. Khezri,
M. Kieferová, S. Kim, A. Kitaev, P. V. Klimov, A. R. Klots, A. N. Korotkov, F. Kostritsa, J. M. Kreikebaum, D. Landhuis,
P. Laptev, K.-M. Lau, L. Laws, J. Lee, K. Lee, B. J. Lester, A. Lill, W. Liu, A. Locharla, E. Lucero, F. D. Malone,
J. Marshall, O. Martin, J. R. McClean, T. McCourt, M. McEwen, A. Megrant, B. Meurer Costa, X. Mi, K. C. Miao,
M. Mohseni, S. Montazeri, A. Morvan, E. Mount, W. Mruczkiewicz, O. Naaman, M. Neeley, C. Neill, A. Nersisyan,
H. Neven, M. Newman, J. H. Ng, A. Nguyen, M. Nguyen, M. Y. Niu, T. E. O’Brien, A. Opremcak, J. Platt,
A. Petukhov, R. Potter, L. P. Pryadko, C. Quintana, P. Roushan, N. C. Rubin, N. Saei, D. Sank, K. Sankaragomathi,
K. J. Satzinger, H. F. Schurkus, C. Schuster, M. J. Shearn, A. Shorter, V. Shvarts, J. Skruzny, V. Smelyanskiy, W. C.
Smith, G. Sterling, D. Strain, M. Szalay, A. Torres, G. Vidal, B. Villalonga, C. Vollgraff Heidweiller, T. White,
C. Xing, Z. J. Yao, P. Yeh, J. Yoo, G. Young, A. Zalcman, Y. Zhang, N. Zhu, and Google Quantum AI, Nature 614,
676 (2023).

[16] C. Ryan-Anderson, J. Bohnet, K. Lee, D. Gresh, A. Hankin, J. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti,
N. Brown, T. Gatterman, S. Halit, K. Gilmore, J. Gerber, B. Neyenhuis, D. Hayes, and R. Stutz, Physical Review
X 11, 041058 (2021), publisher: American Physical Society.

[17] R. Acharya, L. Aghababaie-Beni, I. Aleiner, T. I. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, N. Astrakhant-
sev, J. Atalaya, R. Babbush, D. Bacon, B. Ballard, J. C. Bardin, J. Bausch, A. Bengtsson, A. Bilmes, S. Blackwell,
S. Boixo, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, D. A. Browne, B. Buchea, B. B. Buckley,
D. A. Buell, T. Burger, B. Burkett, N. Bushnell, A. Cabrera, J. Campero, H.-S. Chang, Y. Chen, Z. Chen, B. Chiaro,
D. Chik, C. Chou, J. Claes, A. Y. Cleland, J. Cogan, R. Collins, P. Conner, W. Courtney, A. L. Crook, B. Curtin,
S. Das, A. Davies, L. De Lorenzo, D. M. Debroy, S. Demura, M. Devoret, A. Di Paolo, P. Donohoe, I. Drozdov,
A. Dunsworth, C. Earle, T. Edlich, A. Eickbusch, A. M. Elbag, M. Elzouka, C. Erickson, L. Faoro, E. Farhi, V. S.
Ferreira, L. F. Burgos, E. Forati, A. G. Fowler, B. Foxen, S. Ganjam, G. Garcia, R. Gasca, E. Genois, W. Giang,
C. Gidney, D. Gilboa, R. Gosula, A. G. Dau, D. Graumann, A. Greene, J. A. Gross, S. Habegger, J. Hall, M. C.
Hamilton, M. Hansen, M. P. Harrigan, S. D. Harrington, F. J. H. Heras, S. Heslin, P. Heu, O. Higgott, G. Hill,
J. Hilton, G. Holland, S. Hong, H.-Y. Huang, A. Huff, W. J. Huggins, L. B. Ioffe, S. V. Isakov, J. Iveland, E. Jeffrey,
Z. Jiang, C. Jones, S. Jordan, C. Joshi, P. Juhas, D. Kafri, H. Kang, A. H. Karamlou, K. Kechedzhi, J. Kelly, T. Khaire,
T. Khattar, M. Khezri, S. Kim, P. V. Klimov, A. R. Klots, B. Kobrin, P. Kohli, A. N. Korotkov, F. Kostritsa, R. Kothari,
B. Kozlovskii, J. M. Kreikebaum, V. D. Kurilovich, N. Lacroix, D. Landhuis, T. Lange-Dei, B. W. Langley, P. Laptev,
K.-M. Lau, L. L. Guevel, J. Ledford, K. Lee, Y. D. Lensky, S. Leon, B. J. Lester, W. Y. Li, Y. Li, A. T. Lill, W. Liu,
W. P. Livingston, A. Locharla, E. Lucero, D. Lundahl, A. Lunt, S. Madhuk, F. D. Malone, A. Maloney, S. Mandrá,

http://dx.doi.org/10.22331/q-2021-04-15-433
http://dx.doi.org/10.1073/pnas.1619152114
http://dx.doi.org/10.1073/pnas.1619152114
http://dx.doi.org/10.1021/acs.jctc.2c00574
http://dx.doi.org/10.1103/PRXQuantum.2.030305
http://dx.doi.org/10.1103/PRXQuantum.2.030305
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.48550/arXiv.quant-ph/9705052
http://dx.doi.org/10.1038/nature23460
http://dx.doi.org/10.1103/PhysRevA.86.052329
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.22331/q-2019-03-05-128
http://dx.doi.org/10.48550/arXiv.2309.05558
http://dx.doi.org/10.48550/arXiv.2309.05558
http://dx.doi.org/10.1088/2399-1984/aceba6
http://dx.doi.org/10.1088/2399-1984/aceba6
http://dx.doi.org/10.1016/j.micpro.2019.02.004
http://dx.doi.org/10.1103/PhysRevLett.112.190504
http://dx.doi.org/10.1038/s41586-022-05434-1
http://dx.doi.org/10.1038/s41586-022-05434-1
http://dx.doi.org/10.1103/PhysRevX.11.041058
http://dx.doi.org/10.1103/PhysRevX.11.041058

L. S. Martin, S. Martin, O. Martin, C. Maxfield, J. R. McClean, M. McEwen, S. Meeks, A. Megrant, X. Mi, K. C.
Miao, A. Mieszala, R. Molavi, S. Molina, S. Montazeri, A. Morvan, R. Movassagh, W. Mruczkiewicz, O. Naaman,
M. Neeley, C. Neill, A. Nersisyan, H. Neven, M. Newman, J. H. Ng, A. Nguyen, M. Nguyen, C.-H. Ni, T. E. O’Brien,
W. D. Oliver, A. Opremcak, K. Ottosson, A. Petukhov, A. Pizzuto, J. Platt, R. Potter, O. Pritchard, L. P. Pryadko,
C. Quintana, G. Ramachandran, M. J. Reagor, D. M. Rhodes, G. Roberts, E. Rosenberg, E. Rosenfeld, P. Roushan,
N. C. Rubin, N. Saei, D. Sank, K. Sankaragomathi, K. J. Satzinger, H. F. Schurkus, C. Schuster, A. W. Senior,
M. J. Shearn, A. Shorter, N. Shutty, V. Shvarts, S. Singh, V. Sivak, J. Skruzny, S. Small, V. Smelyanskiy, W. C.
Smith, R. D. Somma, S. Springer, G. Sterling, D. Strain, J. Suchard, A. Szasz, A. Sztein, D. Thor, A. Torres, M. M.
Torunbalci, A. Vaishnav, J. Vargas, S. Vdovichev, G. Vidal, B. Villalonga, C. V. Heidweiller, S. Waltman, S. X. Wang,
B. Ware, K. Weber, T. White, K. Wong, B. W. K. Woo, C. Xing, Z. J. Yao, P. Yeh, B. Ying, J. Yoo, N. Yosri, G. Young,
A. Zalcman, Y. Zhang, N. Zhu, and N. Zobrist, “Quantum error correction below the surface code threshold,”
2408.13687 [quant-ph] .

[18] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu, D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina, and
C. Monroe, Nature 598, 281 (2021), publisher: Nature Publishing Group.

[19] D. Ristè, L. C. G. Govia, B. Donovan, S. D. Fallek, W. D. Kalfus, M. Brink, N. T. Bronn, and T. A. Ohki, npj
Quantum Information 6, 1 (2020), publisher: Nature Publishing Group.

[20] D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski,
D. Hangleiter, J. P. Bonilla Ataides, N. Maskara, I. Cong, X. Gao, P. Sales Rodriguez, T. Karolyshyn, G. Semeghini,
M. J. Gullans, M. Greiner, V. Vuletić, and M. D. Lukin, Nature 626, 58, publisher: Nature Publishing Group.

[21] C. Gidney, Quantum 6, 786 (2022), arXiv:2204.13834 [quant-ph].
[22] D. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, New Journal of Physics 14, 123011 (2012),

arXiv:1111.4022 [quant-ph].
[23] A. Erhard, H. Poulsen Nautrup, M. Meth, L. Postler, R. Stricker, M. Stadler, V. Negnevitsky, M. Ringbauer,

P. Schindler, H. J. Briegel, R. Blatt, N. Friis, and T. Monz, Nature 589, 220 (2021), publisher: Nature Publishing
Group.

[24] H. Bombin, C. Dawson, R. V. Mishmash, N. Nickerson, F. Pastawski, and S. Roberts, PRX Quantum 4, 020303
(2023), arXiv:2112.12160 [quant-ph].

[25] G. P. Gehér, C. McLauchlan, E. T. Campbell, A. E. Moylett, and O. Crawford, Quantum 8, 1394 (2024), publisher:
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.

[26] E. H. Chen, T. J. Yoder, Y. Kim, N. Sundaresan, S. Srinivasan, M. Li, A. D. Córcoles, A. W. Cross, and M. Takita,
Physical Review Letters 128, 110504 (), publisher: American Physical Society.

[27] S. T. Spitz, B. Tarasinski, C. W. Beenakker, and T. E. O’Brien, Advanced Quantum Technologies 1, 1800012
(2018).

[28] Z. Chen, K. J. Satzinger, J. Atalaya, A. N. Korotkov, A. Dunsworth, D. Sank, C. Quintana, M. McEwen, R. Barends,
P. V. Klimov, S. Hong, C. Jones, A. Petukhov, D. Kafri, S. Demura, B. Burkett, C. Gidney, A. G. Fowler, A. Paler,
H. Putterman, I. Aleiner, F. Arute, K. Arya, R. Babbush, J. C. Bardin, A. Bengtsson, A. Bourassa, M. Broughton,
B. B. Buckley, D. A. Buell, N. Bushnell, B. Chiaro, R. Collins, W. Courtney, A. R. Derk, D. Eppens, C. Erickson,
E. Farhi, B. Foxen, M. Giustina, A. Greene, J. A. Gross, M. P. Harrigan, S. D. Harrington, J. Hilton, A. Ho, T. Huang,
W. J. Huggins, L. B. Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, K. Kechedzhi, S. Kim, A. Kitaev, F. Kostritsa, D. Landhuis,
P. Laptev, E. Lucero, O. Martin, J. R. McClean, T. McCourt, X. Mi, K. C. Miao, M. Mohseni, S. Montazeri,
W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Newman, M. Y. Niu, T. E. O’Brien, A. Opremcak,
E. Ostby, B. Pató, N. Redd, P. Roushan, N. C. Rubin, V. Shvarts, D. Strain, M. Szalay, M. D. Trevithick, B. Villalonga,
T. White, Z. J. Yao, P. Yeh, J. Yoo, A. Zalcman, H. Neven, S. Boixo, V. Smelyanskiy, Y. Chen, A. Megrant, J. Kelly,
and Google Quantum AI, Nature 595, 383 (), publisher: Nature Publishing Group.

[29] H. Ali, J. Marques, O. Crawford, J. Majaniemi, M. Serra-Peralta, D. Byfield, B. Varbanov, B. M. Terhal, L. DiCarlo,
and E. T. Campbell, “Reducing the error rate of a superconducting logical qubit using analog readout information,”
(2024), arXiv:2403.00706 [cond-mat, physics:quant-ph].

[30] C. A. Pattison, M. E. Beverland, M. P. da Silva, and N. Delfosse, arXiv preprint arXiv:2107.13589 (2021).
[31] L. Skoric, D. E. Browne, K. M. Barnes, N. I. Gillespie, and E. T. Campbell, Nature Communications 14, 7040

(2023), publisher: Nature Publishing Group.
[32] H. Bombín, C. Dawson, Y.-H. Liu, N. Nickerson, F. Pastawski, and S. Roberts, “Modular decoding: Parallelizable

real-time decoding for quantum computers,” 2303.04846 .
[33] X. Tan, F. Zhang, R. Chao, Y. Shi, and J. Chen, “Scalable Surface-Code Decoders with Parallelization in Time,” .

http://dx.doi.org/10.48550/arXiv.2408.13687
http://dx.doi.org/10.48550/arXiv.2408.13687
http://arxiv.org/abs/2408.13687%2520%5Bquant-ph%5D
http://dx.doi.org/10.1038/s41586-021-03928-y
http://dx.doi.org/10.1038/s41534-020-00304-y
http://dx.doi.org/10.1038/s41534-020-00304-y
http://dx.doi.org/10.1038/s41586-023-06927-3
http://dx.doi.org/10.22331/q-2022-08-24-786
http://dx.doi.org/10.1088/1367-2630/14/12/123011
http://dx.doi.org/10.1038/s41586-020-03079-6
http://dx.doi.org/10.1103/PRXQuantum.4.020303
http://dx.doi.org/10.1103/PRXQuantum.4.020303
http://dx.doi.org/10.22331/q-2024-07-02-1394
http://dx.doi.org/10.1103/PhysRevLett.128.110504
http://dx.doi.org/10.1038/s41586-021-03588-y
http://dx.doi.org/10.48550/arXiv.2403.00706
http://dx.doi.org/10.48550/arXiv.2403.00706
http://dx.doi.org/10.1038/s41467-023-42482-1
http://dx.doi.org/10.1038/s41467-023-42482-1
http://dx.doi.org/10.48550/arXiv.2303.04846
http://dx.doi.org/10.48550/arXiv.2303.04846
http://arxiv.org/abs/2303.04846
http://dx.doi.org/10.1103/PRXQuantum.4.040344

Protocols and Applications of�antum Stack Memory
Leonard Li

North Carolina State University
Raleigh, United States

sli74@ncsu.edu

Lingjun Xiong
North Carolina State University

Raleigh, United States
lxiong4@ncsu.edu

Yuan Liu
North Carolina State University

Raleigh, United States
q_yuanliu@ncsu.edu

Introduction. Quantum memory is an indispensable component
for quantum computers. Prior art on quantum memory has focused
on quantum random-access memory [1, 4, 7, 8], the quantum ana-
log of classical random-access memory (RAM). Despite decades of
e�orts, e�cient and reliable protocols for realizing QRAMs are still
challenging. This is mostly due to the stringent requirement on the
feature of random-accessing.

It is worth noting that useful computation may not necessarily
require fully random-access to the memory, because data usage
can often exhibit spatial and temporal locality [2] which tends to
relax the requirement on “random" access. In classical computers,
such temporal locality of data usage is well captured by the so-
called stack memory, where the last bit of data that was stored
has to be retrieved �rst, i.e., “last-in-�rst-out". Despite the limited
memory-access ability in stack memory, they can be easy to realize
physically. Envisioning similar temporal locality in quantum data
access models, a quantum stack memory can be of paramount
importance in these cases. More importantly, because memory
access only need to be “last-in-�rst-out", it is reasonable to believe
that Q-stack can be easier to realize and possess smaller overhead
physically than QRAM.

At the physical level, a minimum requirement for realizing com-
pact quantum memory is the existence of Hilbert space with large
dimensions. Bosonic modes, or quantum harmonic oscillators, are
ubiquitous in nature, and their in�nite-dimensional nature [5]
serves as natural hardware-e�cient quantum memories. However,
writing/reading quantum data in/out such oscillator memory is
challenging, especially in a qubit-by-qubit fashion. Protocols exist
to use oscillators as quantum associative memory [3], but no pro-
posal for quantum stack memory that can employ temporal locality
has been designed using oscillators.

In this work, we develop protocols for realizing quantum stack
memory and quantum queue for hybrid oscillator-qubit quantum
processors. We provide physical level realizations of the push and
pop operation using native instruction gate sets, and analyze the
performance of these new quantum memory protocol under noise.
We conclude by a discussion on the utility of these new quantum
memories for quantum data processing and quantum learning mod-
els.
New Quantum Memory: Quantum Stack. In computer science,
a stack is an abstract data type that functions as a collection of
elements with two primary operations: 1) Push: Adds an element
to the collection; 2) Pop: Removes the most recently added element.
Stacks operate on a Last-In-First-Out (LIFO) principle, meaning the
last element added is the �rst to be removed. This abstract data
structure supports address-independent operations, making it a
fundamental tool for a variety of applications, including Depth-
First Search, Base Conversion and Bracket Matching.

The Quantum Stack mirrors the operations of a classical stack
but o�ers unique advantages in pushing and popping quantum data
instead of classical ones. To demonstrate how our Q-stack works
clearly, a schematic is shown in Fig. 1, where unitary operation
?>? (?DB⌘) is designed to pop (push) one qubit of data out of (into)
the Q-stack. A quantum harmonic oscillator is used to store the
quantum data, while a qubit is coupled to the oscillator to facilitate
easy quantum control of the oscillator.

Figure 1: Schematic of the operation of a quantum stackmem-
ory based on oscillator-qubit systems, showing the action of
the push and pop operations.

Physical Realization of Q-Stack from Correction-free Quan-
tum Teleportation. Our idea for realizing quantum stack is to
teleport an external qubit of states into a superposition of Fock
levels of the oscillator. For Fock level |8i, de�ne the shift operator
(= |8i = |8 + 2=i. De�ne the logical zero and one that store = qubits
of information recursively as

¯|0i= = U= ¯|0i=�1 + V= ¯|1i=�1, ¯|1i= = (= ¯|0i= . (1)

The entanglement generate unitary*= can be synthesized by using
*=

*= |0iqubit ⌦ |8i = 1p
2
(|0iqubit ⌦ |8i + |1iqubit ⌦

��8 + 2=�1
↵
), (2)

or equivalently on the logical states,*= |0i ¯|0i=�1 = 1p
2

⇥
|0i ¯|0i=�1+

|1i ¯|1i=�1
⇤
. Using*= , it can be shown that the quantum circuit in

Fig. 2 can be used to teleport an external qubit of data |q=i4 into
the oscillator.

|q=i4 • �

|0i
*=¯|0i=�1

Figure 2: Quantum circuit which teleports an external qubit
|q=i4 into the bosonic oscillator without the Pauli correction
operation, resulting in an error version of |q=i4 stored in the
oscillator where the four possible errors are stored as a 2-bit
classical bitstring obtained from the measurement.

Conference’17, July 2017, Washington, DC, USA Leonard Li, Lingjun Xiong, and Yuan Liu

The entangling gate*= is not a native gate on oscillator-qubit sys-
tems. However, it can be realized by using the following sequence
of native gates in the instruction sets of hybrid oscillator-qubit
quantum processors

*=,approx = ⇡ (U=)SQR(Æ\=, Æq=)⇡ (V=)SQR(ÆX=, Æ[=)⇡ (W=), (3)

where ⇡ (U) ⌘ 4U0
†�U⇤0 is the displacement gate, and SQR(Æ\ , Æi) =Õ#max

==0 'i= (\=) ⌦ |=i h= | is the photon-number-Selective Qubit Ro-

tation (SQR) gate [6] for 'i (\) = exp
⇣
�8 \2fi

⌘
and fi = fG cosi+

f~ sini . {U=, V=,W=} 2 C are complex numbers representing the
displacement amount, while { Æ\=, Æq=, ÆX=, Æ[=} 2 [0, 2c) are four vec-
tors of phase angles parametrizing the SQR gate. It can be shown
numerically that Eq. (3) can realize*= with high precision.
From Quantum Stack to Quantum Queue. Build on top of Q-
stack, we demonstrate that more complicated quantum memory
access pattern such as quantum queue can be realized by using two
quantum stacks.

A queue is an abstract data type in computer science charac-
terized by its First-In-First-Out (FIFO) operation. It represents a
collection of entities organized in a sequence, where entities are
added to one end and removed from the opposite end. The end
where elements are added is known as the back or rear, while
the end where elements are removed is the head or front. This
structure mirrors how people line up for goods or services.

Queues support two primary operations: 1) Enqueue: Add an
entity to the back of the queue; 2)Dequeue: Remove an entity from
the front of the queue. Queues are pivotal in various applications
due to their address-independent operations and their natural �t
for sequential data processing. Notable uses include Breadth-First
Search, Message Queues, Task Scheduling and a key feature of our
work: Bu�er Management.
Quantum Queue: Advantages and Implementation. The Quantum
Queue builds upon the classical queue’s properties, incorporating
all the advantages of the Quantum Stack over the classical stack.
By implementing a quantum version of the queue, we achieve a
signi�cant milestone: the quantum realization of two of computer
science’s most classic data structures.

By leveraging the Quantum Stack, we have devised a method to
implement a Quantum Queue without introducing any additional
physical structures. This implementation incurs an overhead cost
of precisely twice that of the Quantum Stack, as it utilizes two
quantum stacks to form a quantum queue. Each data throughput
operation involves exactly 2 push and 2 pop actions, as illustrated
in Figure 3. A formal algorithm for this implementation can be found
in Algorithm 1. For brevity, we omit the proof of its correctness.
Applications and Discussions. Leveraging Q-stack and Q-queue
can enable many interesting quantum data processing and learn-
ing tasks. For example, quantum queue allows asynchronization
between quantum data acquisition and processing. Storage of multi-
qubit of data into a single oscillator mode also opens the potential
for quantum single-instruction-multi-data processing. Our work
opens a new avenue for quantum memory design that will play an
important role in quantum computer system design and applica-
tions.

Figure 3: Stack to Queue Illustration

Algorithm 1 Queue Operations with Two Stacks

1: QuantumStack read_stack, write_stack;
2: function ������(30C0)
3: write_stack.push(data)
4: end function
5: function ������
6: if read_stack is empty then
7: while write_stack not empty do
8: tmp_data = write_stack.pop()
9: read_stack.push(tmp_data)
10: end while
11: end if
12: return read_stack.pop()
13: end function

REFERENCES
[1] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 2008. Quantum random

access memory. Physical review letters 100, 16 (2008), 160501.
[2] John LHennessy andDavid A Patterson. 2011. Computer architecture: a quantitative

approach. Elsevier.
[3] Adrià Labay-Mora, Roberta Zambrini, and Gian Luca Giorgi. 2023. Quantum As-

sociative Memory with a Single Driven-Dissipative Nonlinear Oscillator. Physical
Review Letters 130, 19 (2023), 190602.

[4] Chenxu Liu, Meng Wang, Samuel A Stein, Yufei Ding, and Ang Li. 2023. Quan-
tum Memory: A Missing Piece in Quantum Computing Units. arXiv preprint
arXiv:2309.14432 (2023).

[5] Yuan Liu, Jasmine Sinanan-Singh, Matthew T. Kearney, Gabriel Mintzer, and
Isaac L. Chuang. 2021. Constructing qudits from in�nite-dimensional oscillators
by coupling to qubits. Phys. Rev. A 104 (Sep 2021), 032605. Issue 3. https://doi.
org/10.1103/PhysRevA.104.032605

[6] Yuan Liu, Shraddha Singh, Kevin C Smith, Eleanor Crane, John M Martyn, Alec
Eickbusch, Alexander Schuckert, Richard D Li, Jasmine Sinanan-Singh, Miche-
line B Soley, et al. 2024. Hybrid Oscillator-Qubit Quantum Processors: Instruction
Set Architectures, Abstract Machine Models, and Applications. arXiv preprint
arXiv:2407.10381 (2024). https://arxiv.org/abs/2407.10381

[7] DK Weiss, Shruti Puri, and SM Girvin. 2023. QRAM architectures using supercon-
ducting cavities. arXiv preprint arXiv:2310.08288 (2023).

[8] Shifan Xu, Connor T Hann, Ben Foxman, Steven M Girvin, and Yongshan Ding.
2023. Systems Architecture for Quantum Random Access Memory. arXiv preprint
arXiv:2306.03242 (2023).

https://doi.org/10.1103/PhysRevA.104.032605
https://doi.org/10.1103/PhysRevA.104.032605
https://arxiv.org/abs/2407.10381

Fast quantum interconnects via constant-rate entanglement distillation

C. A. Pattison⇤, G. Baranes⇤, J. P. Bonilla Ataides, M. D. Lukin, and H. Zhou
(Dated: September 30, 2024. QuEra Computing Inc., Harvard University, MIT, Caltech)

Background

Distributed quantum computing allows the modular construction of large-scale quantum com-
puters and enables new protocols for verifiably-secure quantum computation [1–7]. However, such
applications place stringent demands on the fidelity and rate of entanglement generation, which are
not met by existing methods for quantum interconnects. This is particularly challenging in the regime
of large-scale, fault-tolerant distributed quantum computing, which requires very low logical error
rates and fast logical clock speeds. For example, state-of-the-art demonstrations of interconnecting
quantum nodes only achieve logical entangling fidelities in the high 90s and entangling rates of
a few hundred pairs per second [8–14]. The entanglement fidelity can be improved through the
use of various one-way or two-way entanglement distillation schemes [15, 16], but this leads to
a further degradation in the effective logical entangling rate. With typical target gate operation
fidelities for large-scale algorithms in the 10�12 range, the standard 4-to-1 recursive distillation
scheme would require almost a hundred physical Bell pairs (per logical Bell pair) of percent-level
infidelity. Alternative schemes relying on lattice surgery have also been developed [17, 18], but
would again require hundreds to thousands of physical Bell pairs per logical Bell pair in similar
parameter regimes. The combination of these factors suggest that current schemes and physical
hardware will result in logical entangling rates of a few Hz, much slower than the QEC cycle times
of 1 µs to 1 ms in various state-of-the-art hardware systems [19–27]. It is thus highly desirable to
develop methods that use the communication link much more sparingly, thereby achieving higher
logical entangling rates while maintaining high target logical fidelities.
Constant-Overhead Entanglement Distillation

In this work, we develop entanglement distillation methods that achieve constant communication
rate, and show that they yield practical protocols with very low communication overhead. To achieve
constant communication rate, we adapt a technique originating in fault-tolerant computation [28],
where careful selection of the concatenation sequence permits a concatenated code family to achieve
constant rate. We rigorously analyze the error rates and success probabilities at each step of the
protocol, thereby providing theoretical guarantees of the distillation overhead and performance.

We work in the setting where two-way classical communication is permitted [16], thereby allowing
the use of error detection and post-selection instead of error correction. This crucial usage of
real-time error information, and feed-forward selection of distillation instances that pass the error
detection, allows one to use input physical Bell pairs with much lower starting fidelity, and can
achieve higher encoding rates. Moreover, it bypasses the decoding problem for random quantum
codes, which may be computationally challenging. To conserve communication bandwidth and
ensure that errors primarily arise from noisy physical Bell pair generation between different nodes, we
inject each physical qubit state into a logical qubit (e.g. a surface code) using standard high-fidelity
state injection techniques [29–31], which add only a negligible amount of noise in the process when
the network is much noisier. This allows us to bound and ignore local operation errors in the process,
thereby using the communication channel more efficiently.
Empirical Overhead and Order-Of-Magnitude Improvement Over Current Schemes

Following the proof of asymptotic constant rate, we examine and optimize our scheme numerically,
directly refining the code sequence over the best possible parameters for small classical and quantum
codes [32]. We find sequences of codes that require as few as 6 physical Bell pairs per logical Bell
pair at 1% physical Bell pair error rates, almost an order of magnitude reduction compared to

2

conventional schemes (see Tab. I), with only a small increase in the required memory footprint.
Our scheme also allows a continuous tradeoff between communication overhead and network buffer
memory footprint, enabling the optimization of these parameters in a wide range of physical settings.

To optimize system resource allocation during the establishment of high-fidelity logical entangle-
ment, we optimize the unencoding circuit and pipeline the different levels of entanglement distillation
to minimize resource usage while providing high throughput. We find that in a wide range of
parameter regimes of interest, particularly considering the fact that many local operations can
typically be performed in parallel within a module, the distillation procedure itself does not cause
a bottleneck, and our scheme compares favorably to other distillation schemes or lattice-surgery-
based interconnect schemes. These methods are also directly compatible with recent advances in
intra-module operations based on transversal gates [20, 33, 34].

Finally, we apply our results to distributed quantum computation, analyzing how the efficacy of
quantum computation varies depending on the algorithm and quantum interconnect characteristic.
We characterize the algorithmic requirements of intercore communication with the parameter �,
which we define to be the average number of intercore logical entanglement operations per core
required for each intracore logical circuit layer, and estimate this parameter for a variety of algorithms
such as ripple-carry adders and random quantum circuits. Assuming one layer of intramodule logical
operation takes time tl, while an intermodule logical operation takes time te↵, we find that when
�te↵ � tl, the network communication becomes the limiting factor. For typical operation parameters
and conventional approaches to quantum interconnects, we find that the network communication is
indeed limiting. However, the use of our constant-rate distillation scheme significantly alleviates
this issue, leading to a better balance between intracore and intercore operations.

Taken together, our work provides over an order of magnitude performance improvement to
the communication overhead for fault-tolerant distributed quantum computing, as well as the
flexibility to adapt to a variety of settings with different communication rates and buffer memory
sizes. We therefore believe that our results will be a key building block to future large-scale quantum
computers.

Network error rate 0.1% 1% 5% 10% 15%
Distillation input error rate 0.35% 1.25% 5.2% 10.2% 15.2%

BDSW-2EPP scheme - overhead 64.2 66.8 295.3 348.5 1694
BDSW-2EPP scheme with Y basis - overhead 32.3 33.1 148.2 173.6 416.2

Lattice surgery - overhead 1,089 1,369 5,329 22,201 142,129
Constant-overhead distillation (buffer = 30) - overhead 4.7 6.2 14 33 63
Constant-overhead distillation (buffer = 50) - overhead 3.3 6.2 14 26 52

Constant-overhead distillation (buffer = 100) - overhead 2.5 4.4 11 23 46

TABLE I: Physical bell pair overhead per logical gate required for different schemes for distributed quantum
computation. The values in the table are calculated using the gate error rate pgate = 0.1%. For all distillation
schemes, we first use state injection, transforming the network error rate into the distillation input error rate.
For lattice surgery, we instead directly operate a lattice surgery operation between two surface code patches
across the link. Our scheme (bottom three rows) shows an order of magnitude overhead reduction compared
to existing schemes.

3

[1] H. J. Kimble, Nature 453, 1023 (2008), ISSN 1476-4687, URL http://dx.doi.org/10.1038/
nature07127.

[2] C. H. Bennett and G. Brassard, Workshop on the theory and application of cryptographic techniques
(1984).

[3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Reviews of Modern Physics 74, 145 (2002), ISSN
00346861, URL https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.145.

[4] H. K. Lo, M. Curty, and K. Tamaki, Nature Photonics 2014 8:8 8, 595 (2014), ISSN 1749-4893, URL
https://www.nature.com/articles/nphoton.2014.149.

[5] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L. M. Duan, and J. Kim, Physical
Review A - Atomic, Molecular, and Optical Physics 89 (2012), URL http://arxiv.org/abs/1208.
0391http://dx.doi.org/10.1103/PhysRevA.89.022317.

[6] H. Buhrman and H. Röhrig, Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 2747, 1 (2003), ISSN 16113349, URL
https://link.springer.com/chapter/10.1007/978-3-540-45138-9_1.

[7] J. F. Fitzsimons, npj Quantum Information 2017 3:1 3, 1 (2017), ISSN 2056-6387, URL https:
//www.nature.com/articles/s41534-017-0025-3.

[8] L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G. Ballance, K. Thirumalai,
J. F. Goodwin, D. M. Lucas, and C. J. Ballance, Physical Review Letters 124, 110501 (2020), ISSN
10797114, URL https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.110501.

[9] B. Jing, X. J. Wang, Y. Yu, P. F. Sun, Y. Jiang, S. J. Yang, W. H. Jiang, X. Y. Luo, J. Zhang, X. Jiang,
et al., Nature Photonics 2019 13:3 13, 210 (2019), ISSN 1749-4893, URL https://www.nature.com/
articles/s41566-018-0342-x.

[10] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann,
and G. Rempe, Nature 2012 484:7393 484, 195 (2012), ISSN 1476-4687, URL https://www.nature.
com/articles/nature11023.

[11] D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, Nature Physics
2014 11:1 11, 37 (2014), ISSN 1745-2481, URL https://www.nature.com/articles/nphys3150.

[12] C. M. Knaut, A. Suleymanzade, Y.-C. Wei, D. R. Assumpcao, P.-J. Stas, Y. Q. Huan, B. Machielse,
E. N. Knall, M. Sutula, G. Baranes, et al., arXiv preprint arXiv:2310.01316 (2023), URL https:
//arxiv.org/abs/2310.01316v1.

[13] M. Pompili, S. L. Hermans, S. Baier, H. K. Beukers, P. C. Humphreys, R. N. Schouten, R. F. Vermeulen,
M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, et al., Science 372, 259 (2021), ISSN 10959203,
URL https://www.science.org/doi/10.1126/science.abg1919.

[14] S. Meesala, D. Lake, S. Wood, P. Chiappina, C. Zhong, A. D. Beyer, M. D. Shaw, L. Jiang, and
O. Painter, arXiv preprint arXiv:2312.13559 (2023), URL https://arxiv.org/abs/2312.13559v2.

[15] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Physical
Review Letters 76, 722 (1996), ISSN 10797114, URL https://journals.aps.org/prl/abstract/10.
1103/PhysRevLett.76.722.

[16] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Physical Review A 54, 3824
(1996).

[17] A. G. Fowler, D. S. Wang, C. D. Hill, T. D. Ladd, R. V. Meter, and L. C. L. Hollenberg, Physical Review
Letters 104, 180503 (2010), URL https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.
104.180503.

[18] J. Ramette, J. Sinclair, N. P. Breuckmann, and V. Vuleti�cvuleti�c, arXiv preprint arXiv:2302.01296
(2023), URL https://arxiv.org/abs/2302.01296v1.

[19] R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya,
R. Babbush, et al., arXiv preprint arXiv:2207.06431 (2022), URL https://arxiv.org/abs/2207.
06431v2http://arxiv.org/abs/2207.06431.

[20] D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz, S. Ebadi, M. Cain, M. Kali-
nowski, D. Hangleiter, et al., Nature 626, 58 (2024), ISSN 0028-0836, URL https://www.nature.com/
articles/s41586-023-06927-3.

[21] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P. Gaebler, D. Francois,
A. Chernoguzov, D. Lucchetti, N. C. Brown, et al., Physical Review X 11 (2021), URL https:

http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.145
https://www.nature.com/articles/nphoton.2014.149
http://arxiv.org/abs/1208.0391%20http://dx.doi.org/10.1103/PhysRevA.89.022317
http://arxiv.org/abs/1208.0391%20http://dx.doi.org/10.1103/PhysRevA.89.022317
https://link.springer.com/chapter/10.1007/978-3-540-45138-9_1
https://www.nature.com/articles/s41534-017-0025-3
https://www.nature.com/articles/s41534-017-0025-3
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.110501
https://www.nature.com/articles/s41566-018-0342-x
https://www.nature.com/articles/s41566-018-0342-x
https://www.nature.com/articles/nature11023
https://www.nature.com/articles/nature11023
https://www.nature.com/articles/nphys3150
https://arxiv.org/abs/2310.01316v1
https://arxiv.org/abs/2310.01316v1
https://www.science.org/doi/10.1126/science.abg1919
https://arxiv.org/abs/2312.13559v2
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.722
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.722
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.180503
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.180503
https://arxiv.org/abs/2302.01296v1
https://arxiv.org/abs/2207.06431v2%20http://arxiv.org/abs/2207.06431
https://arxiv.org/abs/2207.06431v2%20http://arxiv.org/abs/2207.06431
https://www.nature.com/articles/s41586-023-06927-3
https://www.nature.com/articles/s41586-023-06927-3
https://arxiv.org/abs/2107.07505v1

4

//arxiv.org/abs/2107.07505v1.
[22] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu, D. Biswas, M. Newman, M. Li, K. R. Brown,

M. Cetina, et al., Nature 2021 598:7880 598, 281 (2021), ISSN 1476-4687, URL https://www.nature.
com/articles/s41586-021-03928-y.

[23] M. H. Abobeih, Y. Wang, J. Randall, S. J. H. Loenen, C. E. Bradley, M. Markham, D. J. Twitchen,
B. M. Terhal, and T. H. Taminiau, Nature 2022 pp. 1–1 (2022), ISSN 1476-4687, URL https://www.
nature.com/articles/s41586-022-04819-6.

[24] L. Postler, F. Butt, I. Pogorelov, C. D. Marciniak, S. Heußen, R. Blatt, P. Schindler, M. Rispler, M. Müller,
and T. Monz, arXiv preprint arXiv:2312.09745 (2023), URL https://arxiv.org/abs/2312.09745v1.

[25] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek,
J. Herrmann, et al., Nature 2022 605:7911 605, 669 (2022), ISSN 1476-4687, URL https://www.nature.
com/articles/s41586-022-04566-8.

[26] V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios, S. Ganjam, A. Miano, B. L. Brock, A. Z.
Ding, L. Frunzio, et al., arXiv preprint arXiv:2211.09116 (2022), URL https://arxiv.org/abs/2211.
09116v1.

[27] Z. Ni, S. Li, X. Deng, Y. Cai, L. Zhang, W. Wang, Z.-B. Yang, H. Yu, F. Yan, S. Liu, et al., arXiv
preprint arXiv:2211.09319 (2022), ISSN 14764687, URL https://arxiv.org/abs/2211.09319v1.

[28] H. Yamasaki and M. Koashi, arXiv preprint arXiv:2207.08826 (2022), URL https://arxiv.org/abs/
2207.08826v2.

[29] Y. Li, New Journal of Physics 17, 023037 (2015), ISSN 1367-2630, URL https://arxiv.org/abs/
1410.7808v1https://iopscience.iop.org/article/10.1088/1367-2630/17/2/023037.

[30] L. Lao and B. Criger, ACM International Conference Proceeding Series pp. 113–120 (2022), URL
https://dl.acm.org/doi/10.1145/3528416.3530237.

[31] C. Gidney, arXiv preprint arXiv:2302.12292 (2023), URL https://arxiv.org/abs/2302.12292v1.
[32] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at

http://www.codetables.de (2007), accessed on 2023-12-19.
[33] M. Cain, C. Zhao, H. Zhou, N. Meister, J. Pablo, B. Ataides, A. Jaffe, D. Bluvstein, and M. D. Lukin,

arXiv preprint arXiv:2403.03272 (2024), URL https://arxiv.org/abs/2403.03272v1.
[34] H. Zhou, C. Zhao, M. Cain, D. Bluvstein, C. Duckering, H.-Y. Hu, S.-T. Wang, A. Kubica, and M. D.

Lukin, arXiv preprint arXiv:2406.17653 (2024), URL https://arxiv.org/abs/2406.17653v1.

https://arxiv.org/abs/2107.07505v1
https://arxiv.org/abs/2107.07505v1
https://www.nature.com/articles/s41586-021-03928-y
https://www.nature.com/articles/s41586-021-03928-y
https://www.nature.com/articles/s41586-022-04819-6
https://www.nature.com/articles/s41586-022-04819-6
https://arxiv.org/abs/2312.09745v1
https://www.nature.com/articles/s41586-022-04566-8
https://www.nature.com/articles/s41586-022-04566-8
https://arxiv.org/abs/2211.09116v1
https://arxiv.org/abs/2211.09116v1
https://arxiv.org/abs/2211.09319v1
https://arxiv.org/abs/2207.08826v2
https://arxiv.org/abs/2207.08826v2
https://arxiv.org/abs/1410.7808v1%20https://iopscience.iop.org/article/10.1088/1367-2630/17/2/023037
https://arxiv.org/abs/1410.7808v1%20https://iopscience.iop.org/article/10.1088/1367-2630/17/2/023037
https://dl.acm.org/doi/10.1145/3528416.3530237
https://arxiv.org/abs/2302.12292v1
http://www.codetables.de
https://arxiv.org/abs/2403.03272v1
https://arxiv.org/abs/2406.17653v1

Quantum Operating System Support for
Quantum Trusted Execution Environments

Theodoros Trochatos
Yale University

New Haven, Connecticut, USA
theodoros.trochatos@yale.edu

Jakub Szefer
Yale University

New Haven, Connecticut, USA
jakub.szefer@yale.edu

Abstract
With the growing reliance on cloud-based quantum comput-
ing, ensuring the con�dentiality and integrity of quantum
computations is paramount. Quantum Trusted Execution
Environments (QTEEs) have been proposed to protect users’
quantum circuits when they are submitted to remote cloud-
based quantum computers. However, deployment of QTEEs
necessitates a Quantum Operating Systems (QOS) that can
support QTEEs hardware and operation. This work intro-
duces the �rst architecture for a QOS to support and enable
essential steps required for secure quantum task execution
on cloud platforms.

1 Introduction
Current cloud computing platforms such as IBM Quantum
(2] or Amazon Braket (1] provide users access to quantum
computers. However, today, cloud providers have full visibil-
ity and control over users’ submitted quantum circuits. This
can expose users to the risk of proprietary quantum algo-
rithms being reverse-engineered or stolen by the providers.
Even if the cloud providers are trusted, there are other threats
such as malicious insiders (3, 5] who can gain access to the
users’ circuits and steal the information. To mitigate risks of
security attacks in cloud-based quantum computation, Quan-
tum Trusted Execution Environments (QTEEs) have been
proposed (3–5]. Their goal is in general to prevent the cloud
provider from knowing the operation executed by the user
or the results. To achieve, this QTEEs apply some sort of ob-
fuscation on the software level, the obfuscated or protected
circuit is sent to the cloud provider, who cannot understand
it, and only in the trusted hardware of the quantum processor
can the circuit be de-obfuscated and executed. Currently, the
missing piece of the technology is the Quantum Operating
System (QOS) which can manage the user circuits and the
QTEEs hardware. The QOS must manage secure loading of
quantum circuits, execution, and transmission of computa-
tion results back to the users.

2 Design of QOS Support for QTEEs
This work outlines the mechanisms needed for securely load-
ing quantum circuits, establishing a trusted environment for
their execution, and returning the results to the users.

2.1 Existing QTEEs
There are already a number of QTEEs that have been pro-
posed in the literature, which are brie�y introduced below.

QC-TEE TheQC-TEEwork (5] introduced the idea of adding
obfuscation to quantum circuits. While digital representation
of the quantum circuits can be encrypted, the circuits are
eventually transformed into analog pulses before execution
on quantum hardware, analog pulses cannot be encrypted –
but cloud provider can spy and attack these pulses. QC-TEE
introduced hardware modi�cations to remove the dummy
obfuscation pulses before they reach qubits. Encrypted meta-
data was used to allow QTEE hardware to determine which
are the dummy obfuscation pulses.

SoteriaQ The SoteriaQ work (4] expanded the ideas of
QC-TEE (5] and outlined detailed architecture of the circuit
obfuscation. Encrypted metadata was again used to allow
QTEE hardware to determine which are the dummy obfus-
cation pulses.

CASQUE The CASQUE work (3] introduced a new idea
of extending obfuscation by swapping pulses between dif-
ferent control and drive channels. In the user’s circuit, after
transpilation, the control pulses would be swapped between
di�erent channels. On the quantum computer end, CASQUE
introduced hardware modi�cations so that the pulses could
be swapped back into the correct channels before they reach
qubits. Encrypted metadata was used to allow CASQUE hard-
ware to determine how to un-swap the control pulses.

2.2 Life-cycle of Quantum Circuit in QTEE
Regardless of the QTEE type, the lifecycle of a circuit in a
QTEE follows three phases: I) secure loading of quantum
circuits, II) execution on the quantum computing hardware,
and III) transmission of computation results back to the users.
Figure 1 outlines the life-cycle of a quantum circuit as han-
dled by QOS.

Phase I: Secure Loading of Quantum Circuits On the
user-end, the quantum circuit is obfuscated according to
the target QTEE, and encrypted metadata is attached to the
circuit. The obfuscated circuit and encrypted metadata are
securely sent to the cloud provider, by an encrypted network
connection. Upon decryption of the network packets, the
circuit and encrypted metadata, needs to be safely stored

H

X

User’s
Quantum Circuit

1) Obtain cryptographic certificate for target quantum computer
2) Augment transpiled circuit with protections
3) Generate encrypted metadata about protections

4) Phase I: load circuits and encrypted metadata on
target quantum computer

5) Phase II: Trigger execution of circuit

9) Phase III: Transmit computation results and
encrypted metadata back to user

6) Decrypt decrypt metadata about protections
7) Activate QTEE hardware to execute protections
8) Generate encrypted output metadata about

computation results

Quantum
SDK

Software
Extension
for QTEE

Hardware
Extension
for QTEE

QOS
Support for

QTEE

Figure 1. Lifecycle of quantum circuits and QOS support needed for QTEEs.

by QOS while awaiting execution. The QOS needs to support
classical, secure networking to receive users’ circuits and their
encrypted metadata. The QOS needs to track of the circuit and
encrypted metadata once received. When storing them on the
cloud, the circuit and encrypted metadata need to be associated
with each other. Since the obfuscation method and encrypted
metadata is speci�c to a particular quantum computer, the
QOS scheduling also needs to be augmented to keep track of
which quantum computer the circuit can execute on.

Phase II: Secure Execution of Quantum Circuits When
the circuit is ready to execute, the transpiled circuit is loaded
onto the quantum controller, which, for example, in case
of superconducting qubit quantum computer, generates the
analog pulses that drive the qubits. In case of QC-TEE (5],
SoteriaQ (4], and CASQUE (3], these pulses contain some
form of obfuscation. Thus, in parallel the encrypted metadata
has to be sent to the quantum computer, so it can decrypt it
and operate on the input pluses according to the metadata.
For example, for (4], some pulses are attenuated based on
the metadata, while for (3], channels on which pulses are
supposed to execute are swapped. The QOS needs to ensure
that the obfuscated circuits of the user are loaded in parallel to
the encrypted metadata on the target quantum computer.

Phase III: Transmission of Computation Results Back
to the User For each shot of a circuit, it is measured and
results returned to the user. Both QC-TEE (5] and SoteriaQ
(4] proposed to randomly insert X gates at the end of the
circuit to randomize the output. In parallel, the modi�ed
quantum computer hardware generates (and encrypts) its
own metadata that can be used by the users to know which
qubits’ outputs were �ipped by the X, so the users can re-
cover the correct output. To support these operations, the
QOS needs to keep track of the (encrypted) output metadata
and transmit it back to the user along with circuit outputs.
The transmission back to the user should use secure, clas-
sical networking. The QOS needs to ensure that the circuit
outputs and the output metadata are associated until they are
returned to the user. The QOS needs to support classical, se-
cure networking to send back users’ results and their encrypted
output metadata.

3 Analysis of QOS Support for QTEE
The QOS modi�cations to support QTEE are minimal, and
can be realized with no overhead on the computation (be-
yond the overheads of the speci�c QTEE hardware). Sched-
uling will be impacted by the QTEEs need that the circuit
protection is speci�c to each quantum computer (because
of the unique cryptographic keys needed for the encrypted
metadata). QOS scheduler cannot move a circuit to a di�er-
ent quantum computer, since each circuit targets a speci�c
backend. This is not a problem in the current NISQ era, as
all circuits are transpiled to a speci�c back end. But in error
corrected quantum computers, where a circuit can execute
on di�erent quantum computer backends, this will be a new
constraint that the QOS needs to manage.

4 Conclusion
The role of the QuantumOperating System (QOS) in support-
ing Quantum Execution Environments (QTEEs) is crucial to
the security of cloud-based quantum computing. By facili-
tating secure loading of quantum circuits, execution on the
quantum computing hardware, and transmission of compu-
tation results back to the users, the QOS can enable robust
protection for sensitive quantum computations without com-
promising performance.

Acknowledgements
This work was supported in part by NSF grant 2245344.

References
[1] Amazon Braket. h�ps://aws.amazon.com/braket/.
[2] IBM Quantum. h�ps://quantum.ibm.com/.
[3] Theodoros Trochatos, Sanjay Deshpande, Chuanqi Xu, Yao Lu, Yong-

shan Ding, and Jakub Szefer. Dynamic pulse switching for protection of
quantum computation on untrusted clouds. In 2024 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages
404–414, 2024.

[4] Theodoros Trochatos, Chuanqi Xu, Sanjay Deshpande, Yao Lu, Yong-
shan Ding, and Jakub Szefer. Hardware architecture for a quantum
computer trusted execution environment, 2023.

[5] Theodoros Trochatos, Chuanqi Xu, Sanjay Deshpande, Yao Lu, Yong-
shan Ding, and Jakub Szefer. A quantum computer trusted execution
environment. IEEE Computer Architecture Letters, 22(2):177–180, 2023.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2245344
https://aws.amazon.com/braket/
https://quantum.ibm.com/

Design and Implementation of the Quantum Cloud Simulation
Framework

Waylon Luo1, Betis Baheri1, Bo Fang2, and Qiang Guan1

1Kent State University
2Pacific Northwest National Laboratory

Abstract—The increasing demand for quantum computing has
exposed inefficiencies in current quantum cloud platforms, where
users often face extensive wait times due to a lack of adequate
simulation frameworks. Classical cloud simulators cannot model
quantum cloud services due to the differences in properties
of quantum tasks from that of classical tasks. To address this
gap, we present QCloudSim, a specialized simulation framework
designed to model the quantum clouds at an administrative
level. QCloudSim offers access to the qubit configurations of
quantum devices from leading providers such as IBM, Google,
and Amazon. By utilizing a coarse-grained model, the framework
simplifies complex quantum bits (qubits) interactions to avoid
unnecessary computational overhead. Furthermore, QCloudSim
supports parallel simulation through mpi4py, enhancing scala-
bility and reducing execution times. That allows researchers and
quantum cloud administrators to experiment with default and
custom configurations, offering an efficient, flexible, and scalable
platform for advancing quantum cloud research.

I. INTRODUCTION
Quantum Computing (QC) is an emerging field with sig-

nificant potential to solve problems [1] considered computa-
tionally infeasible for classical computers, with diverse appli-
cations in pharmacological discovery [2], financial analysis
[3], optimization challenges [4], and machine learning [5],
[6]. As quantum cloud systems grow in complexity, quantum
cloud computing simulations become critical for research,
development, and decision-making, assessing performance,
cost efficiency, scalability, and security.

To address these challenges, we introduce QCloudSim,
a discrete event simulation framework specifically designed
to quantify quantum task scheduling and allocation policies
based on the properties of tasks, configurations, and quantum
devices. Recognizing that the configurations of quantum de-
vices and allocation policy influence the fidelity and execution
time of quantum tasks, QCloudSim enables researchers to
assess their algorithms across different quantum bit (qubit)
topologies without the need for direct experimentation on
physical quantum devices [7]. The goal of quantum computing
experiments is to understand and predict the behavior of real-
world quantum computers and their future performance with
mathematical models [8]. In such case, a simulation framework
is an essential tool in designing and testing new qubit mapping
mechanisms [9] on a large-scale quantum cloud environment.

QCloudSim offers researchers and quantum cloud adminis-
trators an efficient and scalable platform for quantum cloud
simulations. It also allows them to experiment with default
configurations or implement custom scheduling and allocation

policies for quantum devices from leading quantum cloud
providers.

II. SYSTEM DESIGN
The architecture layers of QCloudSim is illustrated in

Figure 1. The framework is primarily implemented in Python.
QCloudSim is designed by extending an open-source discrete-
event simulation library for Python, SimPy, as a chain of dis-
crete events, such as job arrivals, processes, yields, and device
maintenance. SimPy manages concurrency and synchroniza-
tion mechanisms to coordinate multiple processes in scalable
simulations. QCloudSim layer contains the necessary modules
to simulate a quantum cloud environment and manages to
instantiate core entities such as QCloud, QDevice, Broker, and
QJobs. The user’s codes layer is where the framework allows
users to define and implement their own task scheduling and
allocation policies without needing to alter the core compo-
nents. For large-scale parallel simulations, mpi4py (Message
Passing Interface for Python) is integrated at the top-most layer
of the framework. MPI distributes computational workloads
across multiple processes, each simulating a different quantum
device. This parallel execution improves efficiency and reduces
wait times by enabling simultaneous simulations.

Figure 1: The architecture layers

III. ENTITIES
The main component of QCloudSim is the SimPy simula-

tion environment, where processes are defined and executed.

1

These processes represent entities or activities within the sim-
ulated system. It is necessary for users to instantiate core enti-
ties, including the quantum cloud (QCloud), quantum devices
(QDevice), and Broker. Additionally, users are required to con-
figure parameters such as simulation duration, task scheduling,
allocation policies, job intervals, and maintenance schedules.
A QCloud is an entity that contains at least one QDevice
and a Broker. A QDevice contains machine profile, qubit
topology, and maintenance schedule. Quantum jobs (QJobs)
or tasks are generated by the job generator and passed to
Broker. The Broker is responsible for assigning and allocating
QJobs on QDevices. QJobs has properties of quantum tasks
that are required to evaluate and estimate execution time and
allocation. Figure 2 shows the core components of QCloudSim
and the relations between entities.

Figure 2: The core components of the simulation framework

IV. USE CASES
This section discusses QCloudSim’s scalability and poten-

tial use cases. To maintain consistency in performance data, all
simulations are conducted on a single Linux server. The system
hosting QCloudSim uses an x86 64 hardware architecture,
supporting both 32-bit and 64-bit CPU operation modes. It
features a 48-bit address space for both physical and virtual
addresses. The system has 32 CPUs and an AMD EPYC 7313
processor with 16 cores.

Figure 3: Sim-time to complete a fixed number of QJobs with
varying available resources.

In the first demonstration, a fixed number of tasks (QJobs)
is assigned to varying numbers of quantum computers, ranging
from one to five devices. The simulation time steps are

recorded for each experiment. Figure 3 shows that the simula-
tion time steps decrease in logarithmic scales with increasing
numbers of quantum devices. This suggests that the system
scales efficiently with the addition of more quantum devices,
reducing the overall time required for simulations as more
devices are used to process a fixed number of tasks.

Figure 4: Comparison of execution times for simulations with
varying numbers of processors.

MPI is implemented to execute independent simulations in
parallel to mitigate the lengthy program execution time for
large-scale simulations. A series of quantum cloud simulations
is conducted using various number of parallel processes.
As shown in Figure 4, increasing the number of processors
exponentially reduces simulation time. In that way, the imple-
mentation of MPI significantly accelerates program execution.

Utilizing job traces and machine characteristics from real
quantum clouds [10], QCloudSim can serve service providers
as digital twin of their quantum clouds. This approach fa-
cilitates the development of larger quantum computers, as it
enables QCloudSim users to model and configure quantum
clouds by adjusting simulation parameters and device config-
urations.

V. CONCLUSION
QCloudSim addresses a significant and critical gap in the

field of quantum cloud research by providing a specialized
simulation framework dedicated to modeling quantum cloud
systems within a controlled and reproducible environment. By
abstracting the complex internal mechanisms of quantum de-
vices and providing flexible configuration options, QCloudSim
enables researchers to conduct thorough evaluations of quan-
tum cloud systems without the need for costly and time-
consuming experiments on physical hardware. Furthermore,
the framework incorporates parallel processing capabilities
through MPI, which significantly enhances both scalability and
overall simulation performance. Ultimately, QCloudSim cre-
ates new opportunities for experimentation, exploration, and
development in quantum cloud computing, thereby fostering
the creation of more efficient and optimized quantum cloud
services and contributing substantially to the advancement of
the broader quantum computing ecosystem.

2

REFERENCES
[1] J. Preskill, “Quantum computing in the nisq era and beyond,”

Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available:
http://dx.doi.org/10.22331/q-2018-08-06-79

[2] M. Zinner, F. Dahlhausen, P. Boehme, J. Ehlers, L. Bieske,
and L. Fehring, “Quantum computing’s potential for drug
discovery: Early stage industry dynamics,” Drug Discovery Today,
vol. 26, no. 7, pp. 1680–1688, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1359644621002750

[3] P. Griffin and R. Sampat, “Quantum computing for supply chain
finance,” in 2021 IEEE International Conference on Services Computing

(SCC), 2021, pp. 456–459.
[4] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross,

D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn,
A. Kandala, A. Mezzacapo, P. Müller, W. Riess, G. Salis, J. Smolin,
I. Tavernelli, and K. Temme, “Quantum optimization using variational
algorithms on near-term quantum devices,” Quantum Science and

Technology, vol. 3, no. 3, p. 030503, jun 2018. [Online]. Available:
https://dx.doi.org/10.1088/2058-9565/aab822

[5] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett,
Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff,
K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho,
M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey,
Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero,
D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi,
K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel,
P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy,
K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White,
Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, Oct 2019. [Online]. Available:
https://doi.org/10.1038/s41586-019-1666-5

[6] E. P. DeBenedictis, “A future with quantum machine learning,” Com-

puter, vol. 51, no. 2, pp. 68–71, 2018.
[7] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, C. Chin,

B. DeMarco, S. E. Economou, M. A. Eriksson, K.-M. C. Fu,
M. Greiner, K. R. Hazzard, R. G. Hulet, A. J. Kollár, B. L. Lev,
M. D. Lukin, R. Ma, X. Mi, S. Misra, C. Monroe, K. Murch,
Z. Nazario, K.-K. Ni, A. C. Potter, P. Roushan, M. Saffman,
M. Schleier-Smith, I. Siddiqi, R. Simmonds, M. Singh, I. Spielman,
K. Temme, D. S. Weiss, J. Vučković, V. Vuletić, J. Ye, and
M. Zwierlein, “Quantum simulators: Architectures and opportunities,”
PRX Quantum, vol. 2, p. 017003, Feb 2021. [Online]. Available:
https://link.aps.org/doi/10.1103/PRXQuantum.2.017003

[8] A. Hashim, L. B. Nguyen, N. Goss, B. Marinelli, R. K. Naik, T. Chis-
tolini, J. Hines, J. Marceaux, Y. Kim, P. Gokhale et al., “A practical
introduction to benchmarking and characterization of quantum comput-
ers,” arXiv preprint arXiv:2408.12064, 2024.

[9] L. Liu and X. Dou, “Qucloud: A new qubit mapping mechanism for
multi-programming quantum computing in cloud environment,” IEEE

International Symposium on High-Performance Computer Architecture

(HPCA), pp. 167–178, 2021.
[10] G. S. Ravi, K. N. Smith, P. Gokhale, and F. T. Chong, “Quantum

computing in the cloud: Analyzing job and machine characteristics,”
in 2021 IEEE International Symposium on Workload Characterization

(IISWC), 2021, pp. 39–50.

3

L���: QEC Decoding System Architecture for Dynamic Circuits
Yue Wu, Namitha Liyanage and Lin Zhong

Department of Computer Science, Yale University, New Haven, CT

1 Introduction
Quantum error correction (QEC) is a critical component of
FTQC; the QEC decoding system is an important part of Clas-
sical Computing for Quantum or C4Q. Recent years have
seen fast development in real-time QEC decoders [1–11]. Ex-
isting e�orts to build real-time decoders have yet to achieve
a critical milestone: decoding dynamic logical circuits with
error-corrected readout and feed forward. Achieving this re-
quires signi�cant engineering e�ort to adapt and recon�gure
the decoders during runtime, depending on the branching
of the logical circuit.
We present a QEC decoding system architecture called

L���, with the ambitious goal of supporting dynamic logical
operations. L��� employs a novel abstraction called the de-
coding block to describe the decoding problem of a dynamic
logical circuit. Moreover, decoding blocks can be combined
with three other ideas to improve the e�ciency, accuracy
and latency of the decoding system. First, they provide data
and task parallelisms when combined with fusion-based de-
coding [6]. Second, they can exploit the pipeline parallelism
inside multi-stage decoders. Finally, they serve as basic units
of work for computational resource management.
Using decoding blocks, L��� can be easily recon�gured

to support all QEC settings and to easily accommodate inno-
vations in three interdependent �elds: code [12, 13], logical
operations [14–17] and qubit hardware [18–20]. In contrast,
existing decoders are highly specialized to a speci�c QEC
setting, which leads to redundant research and engineering
e�orts, slows down innovation, and further fragments the
nascent quantum computing industry.

2 L��� Decoding System Architecture
We place the proposed L��� decoding system inside the
classical computing part of FTQC as illustrated by Figure 1,
with well-de�ned, technology-agnostic interfaces. The in-
put to the quantum computer is a logical circuit speci�ed
using a programming language such as OpenQASM. Like
a classical software program, the logical circuit consists of
operations and conditionals. Due to the use of conditionals,
the exact sequence of operations is only known at run-time.
The physical controller directly talks to quantum hardware,
generating control signals and receiving measurements, i.e.,
physical readouts, and sending them to the decoding system
to compute the logical readout. The logical controller follows
the logical circuit: it receives the logical readout from the
decoding system and informs the physical controller and
decoding system what logical operation is the next so that
the latter can perform the operation and its QEC decoding,

LEGO Compiler Logical
Controller

LEGO Coordinator

Library: Decoding Blocks

Physical
Controller

Logical
Operation

Physical ReadoutLogical Readout

Analyzer and Configuration

Decoder 1
(Software Decoder)

Initializer

Decoder 2
(FPGA Decoder)

Automated Design
and Configuration

Decoder 3
(ASIC Decoder)

Optimized Design
and Configuration

Decoding Block Decoding Block Decoding BlockI/O

…

LEGO Decoding System

QEC Setting

I/O I/O

Dynamic Logical Circuit

Figure 1. L��� decoding system and its interaction with
other classical components of an FTQC. The orange and blue
blocks represent online and o�ine components, respectively.

respectively. The compiler takes both the QEC setting and,
optionally, the dynamic logical circuit (user program) as in-
put, and generates decoding blocks that can be merged into
any possible decoding graph of the logical circuit.
QEC decoding systems commonly take physical readout

as input and output logical readout; L��� takes two addi-
tional inputs: (1) the logical operation being executed by
the computer, which is known at runtime; and (2) decoding
blocks for all logical operations, which are generated o�ine.
L��� itself is a specialized computer. Hardware-wise, it

includes a collection of decoders of varying degrees of spe-
cialization. Software-wise, the coordinator functions as a
resource manager or operating system that schedules/maps
decoding blocks to decoders, potentially with support from
the compiler.

3 Decoding Graph and Decoding Block
We introduced the notion of decoding graph in [21] in which
an edge represents an error source and a vertex a detec-
tor [22], an XOR of a set of stabilizer measurements. Because
an error source may impact more than two detector readings,
edges can be hyperedges and the graph can be a hypergraph.
Our key insight is that a decoding graph can precisely de-
scribe the decoding problem of many important classes of
qubit codes [23, 24]. Many existing QEC decoders accept a
decoding graph [6, 7, 25–28] as input. For a static logical
circuit that does not contain any conditionals, one can stat-
ically generate the entire decoding graph for its decoding
problem because there is a single execution path. For a dy-
namic logical circuit, there can be many possible execution
paths, each with a di�erent decoding problem. As the actual
execution path is only known at runtime, its decoding graph

1

can only be constructed at runtime, raising a challenge to
real-time decoding. L��� solves it with the abstraction of
the decoding block.

Decoding Blocks: When a quantum computer executes
a logical operation, the operation contributes to sources of
errors (edges) and detector readings (vertices). These vertices
and edges form a decoding graph⌧1 = (+1, ⇢1) that describes
the decoding problem contributed by this logical operation.
The next logical operation in the execution may contribute
another decoding graph⌧2 = (+2, ⇢2). We call ⌫ = +1\+2 the
combination boundary between ⌧1 and ⌧2. ⌫ is non-empty
if the two operations operate on the same qubit during the
same QEC cycle. The decoding system must combine ⌧1
and ⌧2 at this boundary. For a dynamic logical circuit, the
decoding system must combine such decoding graphs from
logical operations at runtime, adding decoding latency.
We introduce a new abstraction called decoding block, or

simply block, for each logical operation in a dynamic logi-
cal circuit. Let $8 , 8 = 1, 2...,= denote the 8th operation. ⌧8 =
(+8 , ⇢8) denote the decoding graph it contributes. Its combina-
tion boundary with that of$ 9 is therefore ⌫8 9 = +8 \+9 . The
block for$8 is de�ned as a tuple: (⌧8 ,⌫8 = {⌫8 9 = +8 \+9 , 8 <
9}). That is, it includes $8 ’s decoding graph and all its com-
bination boundaries with other operations in the same exe-
cution. An example is shown in Figure 2.

We say two blocks are of the same type if they have iden-
tical decoding graphs. Logical operations of the same type
operating on the same set of qubits will produce blocks of
the same type, no matter where they appear in the logical
circuit. Blocks of the same type can share the same decoder,
providing an opportunity for runtime optimization.

Generating Blocks: Importantly, given a logical circuit,
all its blocks can be generated statically, i.e., o�ine. ⌧8 can
be generated based on the QEC setting, including the physi-
cal layout of logical qubits. To generate ⌫8 , a compiler must
enumerate all execution paths and derive the combination
boundaries for the operation in each path. The compiler can
change the granularity of the blocks, making trade-o�s be-
tween a large number of small decoding blocks and a small
number of large decoding blocks or �nding an optimal com-
bination of small and large. For example, the compiler can
generate a single block for a series of operations in the same
execution path. This block will have a large decoding graph
but fewer combination boundaries for the decoding system
to handle at runtime. We note that in general, small blocks
provide �ner granularity for computational parallelism and
scheduling �exibility, at the cost of more runtime overhead
due to combination.
Decoders for Blocks: In L���, blocks are basic units

of work and decoders are basic units of computational re-
source. A decoder can be completely programmable like a
CPU core or FPGA. In this case, it can support any block
as long as the necessary program is available. A decoder
can also be specialized to support a speci�c decoding graph

time

Qubit 1 Qubit 2

Idle(Q1)

Merge(Q1, Q2)

Init(Q1), Init(Q2)

Logical Operations:
Decoding Graph

Measure(Q2)

Figure 2. The QEC decoding problem of a logical circuit
(left) can be described by a decoding graph (middle) as a
combination of decoding blocks (right).

and therefore, a speci�c type of blocks. We can also imagine
a more general decoder that can support decoding graphs
of certain properties and therefore, support more types of
blocks. What types of decoders to develop and include in
L��� is an important task for the designer.

4 Decoding System Design
In this section, we elaborate on the potential design oppor-
tunities brought by decoding blocks.

Fusion-based Decoding: Decoding blocks conveniently
support fusion-based decoding [6] as their decoding graphs
can serve as the partitions with their combination bound-
aries being the fusion boundaries. With fusion-based decod-
ing, each decoding block can be decoded independently, in
parallel, and their results are then used to �nd a solution
for the combined decoding graph e�ciently without loss
of accuracy. Fusion-based decoding was �rst supported for
the MWPM decoder as a parallelization technique [6] and
was recently generalized to the Union-Find decoder [29]
and MWPF decoder [30]. We hypothesize that other QEC
decoders can be adapted for fusion-based decoding. We also
note that window decoding [12] can be used in place of the
fusion operation [6] in fusion-based decoding, albeit less
e�ciently with redundant computation, less accuracy, and
restricted boundary conditions [31–34].

E�cient Multi-Stage Decoding: Decoding blocks also
support multi-stage decoding e�ciently and �exibly. Multi-
stage decoding combines multiple decoders by passing the
output of one to the input of another, for better accuracy [35,
36] or reduced bandwidth [37]. However, multi-stage de-
coders are not suitable for low-latency decoding because a
later stage cannot start until all earlier stages �nish. Decod-
ing blocks support pipeline parallelism inside multi-stage
decoding with adaptive delayed scheduling.

Coordinator: Given a logical operation, the coordinator
creates a decoding task, from its decoding block and assigns
it to one of the many decoders. Because the quantum com-
puter could execute multiple logical operations concurrently
and not all decoders can execute all decoding blocks, the co-
ordinator resembles the operating system of a heterogeneous
classical computer. On the other hand, QEC decoding brings
its own set of challenges due to the tight latency requirement.

2

Moreover, as the compiler generates the decoding blocks (and
their granularity), it can inform and even collaborate with
the coordinator for optimized resource management.

References
[1] Yosuke Ueno, Masaaki Kondo, Masamitsu Tanaka, Yasunari Suzuki,

and Yutaka Tabuchi. QECOOL: On-line quantum error correction with
a superconducting decoder for surface code. In 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2021.

[2] Yosuke Ueno,Masaaki Kondo,Masamitsu Tanaka, Yasunari Suzuki, and
Yutaka Tabuchi. QULATIS: A quantum error correction methodology
toward lattice surgery. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2022.

[3] Poulami Das, Aditya Locharla, and Cody Jones. LILLIPUT: a light-
weight low-latency lookup-table decoder for near-term quantum error
correction. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2022.

[4] Ramon WJ Overwater, Masoud Babaie, and Fabio Sebastiano. Neural-
network decoders for quantum error correction using surface codes:
A space exploration of the hardware cost-performance tradeo�s. IEEE
Transactions on Quantum Engineering, 3:1–19, 2022.

[5] Namitha Liyanage, Yue Wu, Alexander Deters, and Lin Zhong. Scal-
able quantum error correction for surface codes using fpga. In 2023
IEEE International Conference on Quantum Computing and Engineering
(QCE). IEEE, 2023.

[6] Yue Wu and Lin Zhong. Fusion Blossom: Fast MWPM decoders for
QEC. In 2023 IEEE International Conference on Quantum Computing
and Engineering (QCE). IEEE, 2023.

[7] Oscar Higgott and Craig Gidney. Sparse Blossom: correcting a million
errors per core second with minimum-weight matching. arXiv preprint
arXiv:2303.15933, 2023.

[8] Ben Barber, Kenton M. Barnes, Tomasz Bialas, Okan Buğdaycı, Earl T.
Campbell, Neil I. Gillespie, Kauser Johar, Ram Rajan, AdamW. Richard-
son, Luka Skoric, Canberk Topal, Mark L. Turner, and Abbas B. Ziad.
A real-time, scalable, fast and highly resource e�cient decoder for a
quantum computer, 2023.

[9] Suhas Vittal, Poulami Das, and Moinuddin Qureshi. Astrea: Accu-
rate quantum error-decoding via practical minimum-weight perfect-
matching. In Proceedings of the 50th Annual International Symposium
on Computer Architecture, ISCA ’23, New York, NY, USA, 2023. Associ-
ation for Computing Machinery.

[10] Narges Alavisamani, Suhas Vittal, Ramin Ayanzadeh, Poulami Das,
and Moinuddin Qureshi. Promatch: Extending the reach of real-time
quantum error correction with adaptive predecoding. arXiv preprint
arXiv:2404.03136, 2024.

[11] Namitha Liyanage, Yue Wu, Siona Tagare, and Lin Zhong. Fpga-based
distributed union-�nd decoder for surface codes. 2024.

[12] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topo-
logical quantum memory. Journal of Mathematical Physics, 43(9):4452–
4505, 2002.

[13] Sergey Bravyi, Andrew W Cross, Jay M Gambetta, Dmitri Maslov,
Patrick Rall, and Theodore J Yoder. High-threshold and low-overhead
fault-tolerant quantum memory. Nature, 627(8005):778–782, 2024.

[14] A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals
of Physics, 303(1):2–30, 2003.

[15] Daniel Litinski. Magic state distillation: Not as costly as you think.
Quantum, 3:205, 2019.

[16] Hengyun Zhou, Chen Zhao, Madelyn Cain, Dolev Bluvstein, Casey
Duckering, Hong-Ye Hu, Sheng-Tao Wang, Aleksander Kubica, and
Mikhail D Lukin. Algorithmic fault tolerance for fast quantum com-
puting. arXiv preprint arXiv:2406.17653, 2024.

[17] Craig Gidney, Noah Shutty, and Cody Jones. Magic state cultivation:
growing t states as cheap as cnot gates. arXiv preprint arXiv:2409.17595,
2024.

[18] Dolev Bluvstein, Simon J Evered, Alexandra A Geim, Sophie H Li,
Hengyun Zhou, Tom Manovitz, Sepehr Ebadi, Madelyn Cain, Marcin
Kalinowski, Dominik Hangleiter, et al. Logical quantum processor
based on recon�gurable atom arrays. Nature, 626(7997):58–65, 2024.

[19] Rajeev Acharya, Laleh Aghababaie-Beni, Igor Aleiner, Trond I Ander-
sen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw,
Nikita Astrakhantsev, Juan Atalaya, et al. Quantum error correction
below the surface code threshold. arXiv preprint arXiv:2408.13687,
2024.

[20] BenWReichardt, David Aasen, Rui Chao, Alex Chernoguzov,Wim van
Dam, John P Gaebler, Dan Gresh, Dominic Lucchetti, Michael Mills,
Steven A Moses, et al. Demonstration of quantum computation and
error correction with a tesseract code. arXiv preprint arXiv:2409.04628,
2024.

[21] YueWu, Namitha Liyanage, and Lin Zhong. An interpretation of union-
�nd decoder on weighted graphs. arXiv preprint arXiv:2211.03288, 2022.

[22] Craig Gidney. Stim: a fast stabilizer circuit simulator. Quantum, 5:497,
2021.

[23] David Kribs, Raymond La�amme, and David Poulin. Uni�ed and
generalized approach to quantum error correction. Physical review
letters, 94(18):180501, 2005.

[24] Matthew B Hastings and Jeongwan Haah. Dynamically generated
logical qubits. Quantum, 5:564, 2021.

[25] David Poulin and Yeojin Chung. On the iterative decoding of sparse
quantum codes. arXiv preprint arXiv:0801.1241, 2008.

[26] Nicolas Delfosse, Vivien Londe, and Michael E Beverland. Toward a
union-�nd decoder for quantum LDPC codes. IEEE Transactions on
Information Theory, 2022.

[27] Yue Wu, Lin Zhong, and Shruti Puri. Hypergraph minimum-weight
parity factor decoder for qec. Bulletin of the American Physical Society,
2024.

[28] Nicolas Delfosse and Naomi HNickerson. Almost-linear time decoding
algorithm for topological codes. Quantum, 2021.

[29] Namitha Liyanage, Yue Wu, Emmet Houghton, and Lin Zhong. Multi-
fpga system for quantum error correction with lattice surgery. In 2024
IEEE International Conference on Quantum Computing and Engineering
(QCE). IEEE, 2024.

[30] Liu Yang, Yue Wu, and Lin Zhong. Parallel minimum-weight parity
factor decoding for quantum error correction. In 2024 IEEE Interna-
tional Conference on Quantum Computing and Engineering (QCE). IEEE,
2024.

[31] Aravind R Iyengar, Marco Papaleo, Paul H Siegel, Jack Keil Wolf,
Alessandro Vanelli-Coralli, and Giovanni E Corazza. Windowed de-
coding of protograph-based ldpc convolutional codes over erasure
channels. IEEE Transactions on Information Theory, 58(4):2303–2320,
2011.

[32] Xinyu Tan, Fang Zhang, Rui Chao, Yaoyun Shi, and Jianxin Chen. Scal-
able surface code decoders with parallelization in time. PRX Quantum,
2022.

[33] Luka Skoric, Dan E Browne, Kenton M Barnes, Neil I Gillespie, and
Earl T Campbell. Parallel window decoding enables scalable fault
tolerant quantum computation. Nature Communications, 2023.

[34] Héctor Bombín, Chris Dawson, Ye-Hua Liu, Naomi Nickerson, Fer-
nando Pastawski, and Sam Roberts. Modular decoding: paralleliz-
able real-time decoding for quantum computers. arXiv preprint
arXiv:2303.04846, 2023.

[35] Oscar Higgott, Thomas C Bohdanowicz, Aleksander Kubica, Steven T
Flammia, and Earl T Campbell. Fragile boundaries of tailored surface
codes and improved decoding of circuit-level noise. arXiv preprint
arXiv:2203.04948, 2022.

3

[36] Cody Jones. Improved accuracy for decoding surface codes with
matching synthesis. arXiv preprint arXiv:2408.12135, 2024.

[37] Nicolas Delfosse. Hierarchical decoding to reduce hardware require-
ments for quantum computing. arXiv preprint arXiv:2001.11427, 2020.

4

A Case for OS-Managed Resource Pools in
Fault-Tolerant Quantum Computers

Suhas Vittal
suhaskvi�al@gatech.edu

Georgia Institute of Technology
Atlanta, GA, USA

Moinuddin Qureshi
moin@gatech.edu

Georgia Institute of Technology
Atlanta, GA, USA

Abstract
Quantum error correction is the most promising approach
for realizing quantum advantage. Unfortunately, the surface
code, the most promising error correction code, is ine�cient.
Thus, recent work has proposed a register-memory para-
digm, where surface codes as used for compute, and e�cient
QLDPC codes are used as a main memory. In this abstract,
we examine the resource demands of quantum applications
under this paradigm and argue for shared resource pools.

1 Introduction
Quantum error correction remains the most promising path
forward for realizing promising applications and achieving
quantum advantage [2, 9, 13]. Currently, virtually all propos-
als for Fault-Tolerant Quantum Computers (FTQCs), which
use error correction to handle errors during program execu-
tion, use the surface code, which is widely considered to be
the most promising error correction code [5, 6, 8]. However,
for many practical applications, FTQCs using the surface
code are expected to require millions of physical qubits [7].

Thus, Quantum Low Density Parity Check (QLDPC) codes
have emerged as more e�cient alternative to the surface
code. Unlike the surface code, which encodes a single logical
qubit no matter how many physical qubits are used, QLDPC
codes encode multiple logical qubits into a logical block:
larger logical blocks will have more logical qubits and higher
code distances. Thus, QLDPC codes are orders of magnitude
more e�cient than the surface code. However, it remains
unclear how to perform basic quantum gates on single logical
qubits within a logical block.
Thus, recent research has argued for operating QLDPC

codes as a main memory, where surface code registers re-
trieve program qubits from the memory and perform com-
putation [1, 3, 4, 14]. Under this paradigm, a quantum pro-
gram executing on an FTQC will split its program memory
between surface code registers and QLDPC memory. How-
ever, to perform logical operations on and between program
qubits, the FTQC must also provide the program (1) routing
space to execute ⇠- gates between program qubits and (2)
magic state factories, which produce magic states that are
consumed to perform) gates. Ideally, quantum programs
should receive as many resources as possible to avoid slow-
downs, which can occur due to register �le misses or in-
su�cient magic state production. Unfortunately, resources

will be scarce for the next few decades. Ideally, applications
should be given minimal resources that enable them to run
without much performance degradation. In this abstract, we
explore the resource demands of FTQC applications.

2 Application Resource Demands

���

��

	��

	�

��
�

�����
� �	����� �	������ �	���	��
���������%"#��$�����������$%�#$�

���

�

��

��

��
 �

&�
��

&�
 �

$� ����%�$
��!"#&

Figure 1. Performance of shor_n62 with di�erent con�gs.
In this section, we study two applications, a 62-qubit fac-

toring benchmark (shor_n62) and 177-qubit binary-welded
tree benchmark (bwt_n177), and the tradeo�s between allo-
cating resources towardsmagic state production1 and surface
code registers. To evaluate the impact of di�erent con�gura-
tions, we use an event-driven simulator to measure (1) �%⇠2

and (2) operation delay for 10M gates.

2.1 Results
shor_n62: Figure 1 shows the the performance and oper-
ation delays of shor_n62 for di�erent con�gurations. We
observe that for the (16, 14) con�guration, where about 23%
of the program memory is readily accessible, shor_n62 ex-
periences practically no memory access delay. We attribute
this to the application having many '/ gates, which unroll
into 100s or 1000s of single-qubit gates, most of which are)
gates. Thus, the performance of shor_n62 mostly depends
on magic state production rather than register �le size. We
term such applications as magic-state-bound.
bwt_n177: Figure 2 shows the performance and) gate
latency of bwt_n177 for di�erent con�gurations. Unlike
1Our evaluations assume each magic state must be distilled twice.
2�%⇠ is a commonly-used metric in architecture research that describes the
number of instruction/gates completed per (logical) cycle.

1

https://orcid.org/0000-0003-0236-701X
https://orcid.org/0000-0002-1314-9096

S. Vi�al and M.�reshi

���

��

	��
��

�

�����	� �	������ �	������ �

��	��
���������%"#��$�����������$%�#$�

���

��

	��

	�

��
 �

&�
��

&�
 �

$� ����%�$
��!"#&

Figure 2. Performance of bwt_n177 with di�erent con�gs.

shor_n62, the performance of bwt_n177 saturates at �%⇠ =
0.8, which is about a 25% slowdown relative to an idealized
�%⇠ = 1. We observe that performance plateau is due to
memory accesses. For instance, in the (22, 19) con�guration,
there is no) gate delay, but there are memory access delays
(about 0.6 cycles per gate). Hence, the only way to improve
the performance of bwt_n177 is by increasing the register
�le size: we term such applications as memory-bound.

3 Shared Resource Management
The above evaluations demonstrate that quantum applica-
tions can have di�erent application requirements: they are
either magic-state-bound or memory-bound. Magic-state-
bound applications do not need many registers, whereas
memory-bound applications do not have extremely high
magic state production. Given these extremes, a shared re-
source pool is the best way to optimize resource usage across
multiple applications. Shared resource pools are bene�cial
for two reasons:

1. QLDPC memory blocks often have internal fragmen-
tation or unused logical qubits, which is more severe for
denser codes. A shared memory pool minimizes the im-
pacts of fragmentation.
2. All applications require magic states, and thus, hav-
ing shared magic state factories can enable proportional
resource allocation depending on application needs.

The alternative to a shared resource pool is having users
request private application resources. Unfortunately, this
inevitably results in resource stranding, or unused and inac-
cessible resources, as users typically request more resources
than they need for their applications. Resource stranding is a
signi�cant source of ine�ciency in classical datacenters [11],
and is harmful to FTQCs as resources are already scarce.

3.1 A Case for OS-Managed Shared Resources
But who should manage the shared resources? Historically,
quantum programs have been compiler-driven, in that the
compiler determines what gates are executed, when they are

��� ��� ��	

���������������

���

��	

��

���

��
�
��
��
���

��
��
�
��
��
�

Figure 3. QFT program compilation latency.

executed, and how they are executed [10, 12, 15]. Thus, the
compiler would be the natural choice. Unfortunately, existing
compilers for FTQC programs are rather slow and are limited
to programs with a few thousands of gates [12, 15]. Figure 3
shows the compilation latency for QFT benchmarks for a
recently published surface code compiler [15]. These trends
in compilation latency suggest that adding the complex task
of arbitrating resources between multiple programs might
overwhelm existing compilers.
Thus, we argue that this shared resource pool should be

managed by a kernel (OS) running on the quantum con-
trol processor, which dictates program execution. An OS-
managed resource pool is bene�cial for the compiler, as the
compiler can request resources from the pool instead of man-
aging the pool itself, and for the vendor, who can ensure the
OS meets users’ Quality of Service (QoS).

We propose a straightforward OS design with three main
components; we discuss each component below. (1) a rout-
ing service, which manages routing space, (2) a memory
manager, which manages the surface code register �le and
QLDPC main memory, and (3) a magic state daemon, which
continously produces magic states. We discuss the high-level
design of each component below.
Routing Service.The routing service allocates routing space
for programs on demand.
Memory Manager. The memory manager retrieves pro-
gram qubits for applications. If a request misses in the regis-
ter �le, the program qubit, retrieved from QLDPCmemory, is
swappedwith a victim qubit in the register �le. Consequently,
the memory hierarchy is exclusive.
Magic State Daemon. The magic state daemon produces
magic states constantly and writes them to a bu�er. If the
bu�er becomes full, factories are deallocated to make space
for more distilled magic states. Once the bu�er empties suf-
�ciently, factories are reallocated.

4 Conclusion
Quantum error correction is the most promising method
of realizing quantum advantage. Still, due to the overheads

2

A Case for OS-Managed Resource Pools in Fault-Tolerant �antum Computers

of the surface code, it is expected to require tens of mil-
lions of physical qubits. To reduce these overheads, recent
work has proposed a hybrid where surface codes are used
as registers, and QLDPC codes are used as memory [14]. In
this abstract, we discuss the challenges with adequately al-
locating resources to quantum programs under this model:
we identify that programs are either magic-state-bound or
memory-bound. We further argue for OS-managed shared
resource pools and present a basic skeleton for such an OS.

References
[1] Sergey Bravyi, Andrew W Cross, Jay M Gambetta, Dmitri Maslov,

Patrick Rall, and Theodore J Yoder. High-threshold and low-overhead
fault-tolerant quantum memory. arXiv preprint arXiv:2308.07915, 2023.

[2] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and
Yuan Su. Toward the �rst quantum simulation with quantum speedup.
Proceedings of the National Academy of Sciences, 115(38):9456–9461,
sep 2018.

[3] Lawrence Z Cohen, Isaac H Kim, Stephen D Bartlett, and Benjamin J
Brown. Low-overhead fault-tolerant quantum computing using long-
range connectivity. Science Advances, 8(20):eabn1717, 2022.

[4] Alexander Cowtan. Ssip: automated surgery with quantum ldpc codes.
arXiv preprint arXiv:2407.09423, 2024.

[5] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill.
Topological quantum memory. Journal of Mathematical Physics,
43(9):4452–4505, Sep 2002.

[6] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N
Cleland. Surface codes: Towards practical large-scale quantum com-
putation. Physical Review A, 86(3):032324, 2012.

[7] Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers
in 8 hours using 20 million noisy qubits. Quantum, 5:433, apr 2021.

[8] A Yu Kitaev. Quantum computations: algorithms and error correction.
Russian Mathematical Surveys, 52(6):1191, dec 1997.

[9] Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe,
Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler,
Alá n Aspuru-Guzik, Hartmut Neven, and Ryan Babbush. Improved
fault-tolerant quantum simulation of condensed-phase correlated elec-
trons via trotterization. Quantum, 4:296, jul 2020.

[10] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping prob-
lem for nisq-era quantum devices. In Proceedings of the twenty-fourth
international conference on architectural support for programming lan-
guages and operating systems, pages 1001–1014, 2019.

[11] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bian-
chini. Pond: Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 2, ASPLOS 2023, page 574–587, New York, NY, USA, 2023.
Association for Computing Machinery.

[12] Abtin Molavi, Amanda Xu, Swamit Tannu, and Aws Albarghouthi.
Compilation for surface code quantum computers. arXiv preprint
arXiv:2311.18042, 2023.

[13] Peter W Shor. Scheme for reducing decoherence in quantum computer
memory. Physical review A, 52(4):R2493, 1995.

[14] Joshua Viszlai, Willers Yang, Sophia Fuhui Lin, Junyu Liu, Natalia
Nottingham, Jonathan M Baker, and Frederic T Chong. Matching
generalized-bicycle codes to neutral atoms for low-overhead fault-
tolerance. arXiv preprint arXiv:2311.16980, 2023.

[15] GeorgeWatkins, Hoang Minh Nguyen, KeelanWatkins, Steven Pearce,
Hoi-Kwan Lau, and Alexandru Paler. A high performance compiler for
very large scale surface code computations. Quantum, 8:1354, 2024.

3

A Scalable�antum Circuit Kni�ing Framework via
Parallel and Hardware-E�icient Circuit Cu�ing

Xiangyu Ren1, Mengyu Zhang2, Antonio Barbalace1
1The University of Edinburgh, Edinburgh, UK

{xiangyu.ren,abarbala}@ed.ac.uk
2Tencent Quantum Lab, Shenzhen, China

mengyuzhang@tencent.com

1 Introduction
Quantum computing has the potential to solve many classically
intractable problems. However, the limited number of available
qubits in current Noisy Intermediate Scale Quantum (NISQ) devices
hinders quantum computing from realizing its initially anticipated
computational power.

Circuit knitting emerges as a promising technique to overcome
the limitation of the few physical qubits in near-term quantum
hardware by cutting large quantum circuits into smaller subcircuits.
These subcircuits can be executed on di�erent quantum computers
that are connected by classical communication channels. This is
suitable for quantum computing data centers or modular quantum
computer solutions, while subcircuits can be distributed on het-
erogeneous quantum hardware and executed simultaneously, and
bene�t from the acceleration of parallel quantum computing.

Although current circuit knitting frameworks have been proven
to extend the scalability of quantum computers, there exists chal-
lenges that prevent circuit knitting technique from being feasible to
execute large scale quantum program on real hardware: 1) Exponen-
tially high sampling overhead for each subcircuit; 2) Exponential
post-processing computation for recombining result of subcircuits;
3) Incompatible to the qubit layout in current quantum computers.

To address the above challenges, we design a scalable circuit
knitting framework that reduces the overheads by cutting a group
of non-local quantum gates in parallel. Also, it leverages the qubit
layout information of heterogeneous quantum computers, provid-
ing a circuit cutting solution that reduces the compilation overhead
when subcircuits are executed on speci�c hardware. In addition,
we utilize the tensor network contraction approach to accelerate
classical post-processing. The detail of our designs are elaborated
in the following sections after a brief background section.

2 Background
Quantum circuit knitting [2, 5, 7, 8] has been put forward as a
technique to solve this problem by running large circuits with more
qubits than physically available. The theory behind circuit knitting
is quasiprobability simulation [6]: the expected value of the original
circuit is obtained by sampling each smaller part of it that we de�ne
as subcircuit. Based on the quasiprobability simulation, previous
works provide several approaches to partition the quantum circuit
into smaller ones. Speci�cally, this is realized by decomposing a
qubit wire or a 2-qubit gate into a set of single qubit operations,
followed by classical postprocessing to reconstruct the expectation
value of the original circuit.

Fig. 1 shows a generalization of previous circuit knitting frame-
works, e.g., CutQC [11]. We have our input circuit as OpenQASM

Step 1
Circuit
Cutting

Step2
Qubit Mapping

and Routing

Step 3
Subcircuits
Execution

Step 4
Classical

Postprocessing

Co
m
pi
le
r

In
se

rt
 SW

AP
s

Q
ua
nt
um

Pr
oc
es
so
r

QASM
… … … …
SWAP …

QASM
… … … …
SWAP …

Result
[…]

Result
[…]

⊗ Final
Result

Figure 1: Generalization of previous knitting frameworks.

format. First, the original circuit is cut along qubit wires (wire cut-
ting) or 2-qubit gates (gate cutting, not in Figure) to form separated
subcircuits. Then, subcircuits are individually compiled and ex-
ecuted on quantum processors. Finally, classical postprocessing:
individual execution results are reconstructed into the result of the
original circuit.

3 Parallel Circuit Cutting
One of the primary overheads for circuit knitting is the sampling
overhead for subcircuits. Sampling overhead is the number of shots
each subcircuit needs to run in order to grantee the accuracy of
circuit knitting. Generally, the sampling overhead $ (W2=) scales
exponential with the number of cuts =. In example, cutting a non-
local ⇠- gate has W = 3 for gate cut and W = 4 for wire cut [3, 8].

Recently, several theoretical works emerge with the idea of cut-
ting multiple quantum gates in parallel [10], to minimize the overall
cutting overhead of a quantum circuit. Schmitt et al. [10] proposed
the parallel cutting technique that is proven theoretically to im-
prove the sampling overhead of subcircuits over an exponential
scale. For an arbitrary two-qubit unitary quantum gate* , it can be
performed the � decomposition

* = (+1 ⌦ +2) (
3’

:=0
D:f: ⌦ f:) (+3 ⌦ +4) (1)

while f0 = � and f1,f2,f3 are the Pauli matrices, and +8 are single-
qubit unitaries. With such unitary* we have

W (*) = 1 + 2�* = 1 + 2
’
:<: 0

|D: | |D0: | (2)

as the parameter W of sampling overhead.
Above is the overhead for a single gate cutting, however for cut-

ting = multiple unitary gates * ⌦= in parallel, the cutting overhead
W (* ⌦=) could be improved over cutting these gates solely:

W (* ⌦=) = 2(1 + �*)= � 1 < (1 + 2�*)= = W (*)= (3)

On the left of the equation is the overhead for parallel cutting, while
the right side is overhead for single cuttings. Further theoretical
details can be found in the research [10]. Hence, leveraging such

Xiangyu Ren1, Mengyu Zhang2, Antonio Barbalace1

parallel gate cutting technique can reduce the overall subcircuits
sampling overhead in circuit knitting.

In spite of the bene�ts from parallel cutting, it would be non-
trivial to integrate it into the circuit knitting framework. The sam-
pling overhead parameter W is related with both the type and the
location of the unitaries inside a circuit, hence there exists chances
to optimize the original circuit via quantum circuit transformation,
leading to a lower cutting overhead.

Speci�cally, here are the potential challenges, along with the
opportunities:
(1) Compared to previous circuit knitting frameworks which only

consider about cutting ⇠- gate, our framework leveraging
parallel cutting have to consider the type of quantum gate to cut.
That is because in the case of parallel cutting, overall sampling
overhead W is related to the characteristic of gate. Compared
to previous framework, which simply optimize the number of
gate cuttings, our framework need to �nd the lowest-overhead
cuttings by utilizing gate information.

(2) The location of gates to be cut also matters. Given the theory of
parallel gate cutting in theoretical work [10], cutting a group of
adjacent gates in the circuit require no extra resources, while
cutting several gates that is interleaved with other local gates
would induces extra ancillary qubits for gate-base teleportation.
Hence it calls for a trade-o� between ancillary qubit resource
and sampling overhead.

To address above challenges, we propose the circuit optimization
approached based on ZX-calculus [4]. We represent the original
circuit in the intermediate representation form in ZX-Calculus, and
reconstruct the circuit with consideration of gate type and location
that minimize the sampling overhead while cutting the circuit.

4 Hardware-Aware Circuit Cutting

Circuit knitting is costly as the overhead of subcircuits sampling
and classical postprocessing scale exponentially with the number of
cuts [8]. Hence, to lower such overheads, previous research focuses
onminimizing the number of cuts [11, 12]. Other research involving
cluster-based hardware [1] also focus on minimizing the number
of cuts.

Despite their e�ciency in minimizing the number of cuts, the
follow-on compilation may counteract the improvements. This
is because during compilation a large number of SWAPs may be
inserted in the qubit routing stage, which likely extends the depth
of each subcircuit and undermines the �delity.

The depth increase is caused by neglecting hardware information
during circuit cutting, which makes the routing of the resulting
subcircuits onto actual devices challenging. In fact, in previous
works, the SWAPs insertion remains unknown till we �nish the
circuit cutting procedure and start compilation, which makes the
�nal result vulnerable to mapping and routing overheads.
Hardware-aware Circuit Cutting. Instead of investigating new
qubit mapping and routing methods – widely studied in recent
years, we proposes to incorporate the routing problem into the
circuit cutting [9]. This is in sharp contrast to previous works,
where such steps execute sequentially, and independently. Our
idea is to improve the quality of circuit cutting by considering the
routing overhead on the actual hardware during cutting.

Based on this idea, we exploit the fact that graph similarity be-
tween a subcircuit’s qubit interaction graph and hardware
layout can well predict the number of SWAPs for qubit routing.
Setting graph similarity as an optimization objective, we can itera-
tively improve the quality of circuit cutting. These steps are brie�y
detailed below.
(1) Circuit Cutting: Our algorithm co-optimizes two objectives:

1) minimizing the number of gate cuts, 2) maximizing the sub-
circuit graph similarity to the hardware-layout of a quantum
processor. Graph similarity serves as a "heuristic clue" to reduce
SWAPs before the qubit mapping & routing step. After dividing
logical qubits into di�erent subcircuits, we insert those local
single-qubit operations for replacement using Qiskit.

(2) Compilation and Execution: Each subcircuit is compiled
through qubit mapping & routing, where SWAPs insertion are
actually performed. Then subcircuits are individually executed
on one or more quantum processor. This step is unchanged in
our framework, easily integrating in existent frameworks.

(3) Classical Postprocessing: Finally, we also implement an e�-
cient module for reconstructing results during classical post-
processing. The classical postprocessing can be represented by
tensor network contraction, and a contraction tree optimizer is
utilized to �nd the optimal sequence for contraction.
Apart from quantum circuit knitting, our design is also bene�-

cial for cutting circuits in other distributed quantum computing
scenarios [13], e.g. chiplet architecture [14].

5 Accelerating Classical Postprocessing
Optimizing Recombination Protocol. Classical postprocessing
reconstructs the result of the original circuit by merging subcircuits
result using Kronecker products. Speci�cally, the basic protocol
to merge results of two subcircuits is de�ned in Fig. 2. Note that
the third term in the protocol will expand into 2 ⇥ 4 sub-terms
(each corresponds to a Kronecker product) in respect to each value
combination of the coe�cients U1U2. Due to our observation that
each coe�cient U8 is only related to one side of the result in these
sub-terms, we can split the combined coe�cient U1U2 on each side,
and the following Kronecker product would do recombination for
them. Thus, on each side of the result, the coe�cient will calculate
with subcircuit results ahead of Kronecker product, shrinking 4 sub-
terms into one. Our preprocessing on the coe�cients improve the
number of Kronecker products of each merging from 10 (= 2+2⇥4)
to 4, shown in Fig. 2.

Figure 2: Classical postprocessing: merging two subcircuits
result using tensor contraction. The notation on the right is
a tensor network notation, representing the contraction of
these two subcircuit result.

Acceleration with Tensor Contraction. Furthermore, the merg-
ing operation in Fig. 2 is identical to the operation of tensor contrac-
tion. Kronecker product is a special version of tensor product when
we group the @ indices each with the 2-dimension, into one single
index with 2@-dimension (q=num of qubits). Assume that in both

A Scalable�antum Circuit Kni�ing Framework via Parallel and Hardware-E�icient Cu�ing

upper and lower side of Fig. 2, the 4 result vectors (each with 2@1
or 2@2 -dimension) can be seen as tensor in 4 ⇥ 2@ shape, the whole
merging operation is abstracted into the tensor contraction on the
right of Fig. 2. Correspondingly, if there are = gate cuts between
two subcircuits, the result tensor of each side would be in shape
41⇥ · · ·⇥4= ⇥2@ , who has = legs with 4-dimension and one leg with
2@-dimension in tensor network notation. With such abstraction,
we can translate the classical postprocessing problem into a tensor
network to searching a better solution.

6 Conclusion
Wepropose a framework that leverages parallel gate cutting, hardware-
aware cutting and tensor network contraction-based postprocess-
ing, trying to address the corresponding overhead – sampling over-
head, compilation overhead and classical postprocessing overhead,
in current circuit knitting framework.

References
[1] Jonathan M. Baker, Casey Duckering, Alexander Hoover, and Frederic T. Chong.

Time-sliced quantum circuit partitioning for modular architectures. CF ’20, page
98–107. ACM, 2020.

[2] Sergey Bravyi, Graeme Smith, and John A. Smolin. Trading classical and quantum
computational resources. Phys. Rev. X, 6:021043, Jun 2016.

[3] Lukas Brenner, Christophe Piveteau, and David Sutter. Optimal wire cutting
with classical communication. arXiv preprint arXiv:2302.03366, 2023.

[4] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John Van DeWetering. Graph-
theoretic simpli�cation of quantum circuits with the zx-calculus. Quantum, 4:279,
2020.

[5] Kosuke Mitarai and Keisuke Fujii. Constructing a virtual two-qubit gate by
sampling single-qubit operations. New Journal of Physics, 23(2):023021, feb 2021.

[6] Hakop Pashayan, Joel J. Wallman, and Stephen D. Bartlett. Estimating out-
come probabilities of quantum circuits using quasiprobabilities. Phys. Rev. Lett.,
115:070501, Aug 2015.

[7] Tianyi Peng, Aram W. Harrow, Maris Ozols, and Xiaodi Wu. Simulating large
quantum circuits on a small quantum computer. Phys. Rev. Lett., 125:150504, Oct
2020.

[8] Christophe Piveteau and David Sutter. Circuit knitting with classical communi-
cation. IEEE Transactions on Information Theory, pages 1–1, 2023.

[9] Xiangyu Ren, Mengyu Zhang, and Antonio Barbalace. A hardware-aware
gate cutting framework for practical quantum circuit knitting. arXiv preprint
arXiv:2409.03870, 2024.

[10] Lukas Schmitt, Christophe Piveteau, and David Sutter. Cutting circuits with
multiple two-qubit unitaries. arXiv preprint arXiv:2312.11638, 2023.

[11] Wei Tang, Teague Tomesh, Martin Suchara, Je�rey Larson, and Margaret
Martonosi. CutQC: using small quantum computers for large quantum circuit
evaluations. ASPLOS ’21, page 473–486. ACM, 2021.

[12] Teague Tomesh, Zain H. Saleem, Michael A. Perlin, Pranav Gokhale, Martin
Suchara, and Margaret Martonosi. Divide and conquer for combinatorial opti-
mization and distributed quantum computation, 2021.

[13] Anbang Wu, Hezi Zhang, Gushu Li, Alireza Shabani, Yuan Xie, and Yufei Ding.
Autocomm: A framework for enabling e�cient communication in distributed
quantum programs. MICRO-55, pages 1027–1041, 2022.

[14] Hezi Zhang, Keyi Yin, Anbang Wu, Hassan Shapourian, Alireza Shabani, and
Yufei Ding. Compilation for quantum computing on chiplets. arXiv preprint
arXiv:2305.05149, 2023.

NSF Workshop on Quantum Operating Systems and Real-Time Control, 2024

Understanding Real Time Decoding for Photonic Quantum Computers

Avinash Kumar1, Eneet Kaur2, and Poulami Das1

1The University of Texas at Austin
2CISCO Research

1. Problem: Photonic Quantum Computers

Require Fault-Tolerance

Quantum computers promise substantial speedup over con-
ventional machines for many crucial applications [16, 19].
Photonic qubits are emerging as a promising hardware tech-
nology due to their great scalability, long coherence times and
easy integration with quantum networks. There has been rapid
advancements in this domain over the last few years, both at
device [14, 17, 21, 24] and software levels [22, 23].

Photonic systems comprise of a device called Resource

State Generator (RSG) that generates photons continuously ev-
ery clock cycle. Unlike the circuit based quantum computing
model (similar to the machines being built by Google or IBM)
which uses multi-qubit gates for entangling qubits, photon
entanglement happens via projective measurement in X-X or
Z-Z basis. Photons can be entangled in space or in time, as
shown in Figure 1. Projective measurements for entangling
photons are also called fusions and these operations are inher-
ently probabilistic and error-prone. The typical failure rate
of a fusion ranges between 25-50% [4, 7, 9]. Moreover, to
facilitate operations in time domain, entangled photons are
held in delay lines where they are vulnerable to losses. Such
large error-rates necessitate quantum error correction (QEC).

Figure 1: In each clock cycle, six photons are generated by
each of six RSGs arranged in a 2x3 grid, producing a total of
36 photons. Photons can be entangled in both space and time.

2. Takeaways of This Paper

We introduce the unique challenges associated with QEC on
photonic systems from an architecture perspective. We discuss
how publicly available frameworks for surface codes [10] can
be modified to study QEC for photonic quantum systems. We
open source this framework [10] and finally, discuss open
problems and how this tool can be used for future research.

3. How Does QEC work for Photonic Systems?

We consider fusion based quantum computing (FBQC) [3]
paradigm due to its inherent fault tolerant characteristics. The
central principle of FBQC is to construct fusion networks,
which defines the configuration of fusion measurements to be
made between qubits of different resource states. Resource
states refer to the collection of qubits generated by an RSG in
each clock cycle, similar to the hexagons in Figure 1. FBQC
uses these arrays of RSGs and classical processors to construct
the fusion network, as shown in Figure 2. This is in stark
contrast to surface codes [8, 12] that are primarily studied on
superconducting systems, where entanglements on a fixed grid
lattice of qubits produce the parity information for QEC.

Figure 2: There’s a feedback loop between the RSGs and the
classical processor, which adjusts the device settings for the
RSG array based on fusion outcomes.

We discuss QEC on FBQCs using a 6-ring fusion net-
work [3]. The fusion network comprises of unit cells with
two resource states per unit cell, as shown in Figure 3(a).
These unit cells are then combined with each other (can be in
space or time) to make a larger fusion network as shown in
Figure 3(b). The topology of the unit cell when combined
with other unit cells leads to a fusion happening on the shared
face. For example, if we consider unit cells 0 and 3 , there
is a possible fusion (let’s call this fusion- A) between the
photon on the upper resource state in 0 and the photon in
the lower resource state in 3 . A fusion is also observed be-
tween a photon in the upper resource state in 0 which lies
along the edge of the unit cell and the photon in the lower
resource state in 2 , which is similarly positioned along the
edge of the unit cell (let’s call this fusion– B). Note that the
topology of the unit cell only allows for one fusion between
non-adjacent cubes due to the design of the lattice. The fu-
sion networks provides the parity information or a syndrome

graph, as shown in Figure 3(c), that can be used to iden-
tify errors via a decoder. Typically, minimum weight perfect

matching (MWPM) [5, 10, 13] is considered a promising algo-

rithm for decoding these codes, similar to surface codes, due
to their polynomial time complexity. The direct application
of MWPM poses challenges due to the huge volume of parity
information that must be decoded in contrast to surface codes
on superconducting qubits. Also note the difference in error-
rates- superconducting qubits have an average error-rate of 1%
on current systems [2], whereas fusions fail with an order of
magnitude higher error-rate.

Figure 3: (a) A unit cell with two resource states (6-qubit hexag-
onal ring). (b) Unit cells combine to form larger fusion networks
(c) The syndrome graph of the fusion network (similar to sur-
face codes); NOTE: a parity check can have four or more edges
depending on the fusions involved in the check.

To each unit cell there is a parity node in the syndrome
graph. If we observe that syndrome bits 0 and 1 light up,
then this would indicate that an error has occured with fusion
I. This is analogous to surface codes where we have checks
defined throughout the code and when the neighboring checks
light up, this indicates that there occured an error on the data
qubit between the syndrome qubits.

Each check in the syndrome graph (Figure 3 (c)) is rep-
resentative of one whole unit cell, these checks are formed
by combining the surviving stabilizers in the unit cell after
the fusion process has been completed [3]. If there are no
fusion failures associated with the fusions involving the unit
cell, then the product of surviving stabilizers yields a +1, in the
presence of a fusion failure, the surviving stabilizers yield a
-1, this mechanism is similar to the X and Z checks defined for
surface codes which capture parity information for phase and
bit-flip errors respectively. MWPM (Pymatching) cannot be
directly applied in syndrome graphs where an edge represents
more than one fusion (or data qubit) such as in 4-star fusion
networks [3], a solution for this is to introduce virtual nodes

and edges in the graph to represent the additional connections.

4. Key Results and Contributions

An effective QEC algorithm for photonic systems needs to
operate within the time-frame required to produce the next
layer of resource states (approximately 10-100 ms [11,15,18]).
While our initial impression was that this time frame is signif-
icantly long for us to rely on software solutions, we quickly
identified that this is not the case because the complexity of
MWPM grows with the number of 1s or failure bits in the
syndrome graph (also represented by the Hamming weight).

Our evaluation involves testing the performance of

MWPM [10] for different lattice sizes with an assumed fusion
failure rate of 40%. Figure 4 shows that MWPM performs
well for small photonic systems, with average decoding latency
⇠1ms. However, as we start scaling the system, decoding time
increases by manifold as shown in Figures 5. This is because
as we scale the system size, the parity information that needs to
be decoded for QEC scales exponentially. Existing hardware
decoders using MWPM [1, 6, 20] are incapable of addressing
this issue because the Hamming weights that can be handled
by these decoders are orders of magnitude lower than what is
required to be dealt with in photonic quantum computers.

Figure 4: Hamming weight and average decoding time taken by
MWPM for a 12x12x2 photonic system (Illustrating 144 resource
states and parity collection done over two clock cycles).

Figure 5: Hamming Weight and Corresponding average time
taken by MWPM to decode the syndrome for a 12x12x6 Lattice.

Overall, this paper makes the following contributions:

1. We discuss the inherent challenges associated with pho-
tonic systems that necessitate quantum error correction.
2. We provide the first open source framework, inspired by
Google’s pymatching library, to study the performance of
software Minimum Weight Perfect Matching decoder for
photonic systems: https://github.com/avinkumarUT/
MWPM_Photonics.
3. We show that software decoding is too slow for reasonably
sized lattices even though photonic quantum systems can toler-
ate upto several orders of magnitude higher decoding latency
than the competing superconducting qubit technology.

In the future, we hope this infrastructure attracts more ef-
fort from the computer architecture and quantum computing
community to explore robust scalable solutions for real time
decoding in photonic systems.

2

https://github.com/avinkumarUT/MWPM_Photonics
https://github.com/avinkumarUT/MWPM_Photonics

References

[1] Narges Alavisamani, Suhas Vittal, Ramin Ayanzadeh, Poulami Das,
and Moinuddin Qureshi. Promatch: Extending the reach of real-time
quantum error correction with adaptive predecoding. In Proceedings

of the 29th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Volume 3, pages
818–833, 2024.

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C
Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL
Brandao, David A Buell, et al. Quantum supremacy using a pro-
grammable superconducting processor. Nature, 574(7779):505–510,
2019.

[3] Sara Bartolucci, Patrick Birchall, Hector Bombin, Hugo Cable, Chris
Dawson, Mercedes Gimeno-Segovia, Eric Johnston, Konrad Kieling,
Naomi Nickerson, Mihir Pant, et al. Fusion-based quantum computa-
tion. Nature Communications, 14(1):912, 2023.

[4] Daniel E Browne and Terry Rudolph. Resource-efficient linear optical
quantum computation. Physical Review Letters, 95(1):010501, 2005.

[5] William Cook and Andre Rohe. Computing minimum-weight perfect
matchings. INFORMS journal on computing, 11(2):138–148, 1999.

[6] Poulami Das, Aditya Locharla, and Cody Jones. Lilliput: a lightweight
low-latency lookup-table decoder for near-term quantum error cor-
rection. In Proceedings of the 27th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems, pages 541–553, 2022.
[7] Fabian Ewert and Peter van Loock. 3/4-efficient bell measurement

with passive linear optics and unentangled ancillae. Physical review

letters, 113(14):140403, 2014.
[8] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N

Cleland. Surface codes: Towards practical large-scale quantum com-
putation. Physical Review A—Atomic, Molecular, and Optical Physics,
86(3):032324, 2012.

[9] Warren P Grice. Arbitrarily complete bell-state measurement using
only linear optical elements. Physical Review A—Atomic, Molecular,

and Optical Physics, 84(4):042331, 2011.
[10] Oscar Higgott and Craig Gidney. Sparse blossom: correcting a million

errors per core second with minimum-weight matching. arXiv preprint

arXiv:2303.15933, 2023.
[11] D Istrati, Y Pilnyak, JC Loredo, C Antón, N Somaschi, P Hilaire,

H Ollivier, M Esmann, L Cohen, L Vidro, et al. Sequential gener-
ation of linear cluster states from a single photon emitter. Nature

communications, 11(1):5501, 2020.
[12] A Yu Kitaev. Quantum computations: algorithms and error correction.

Russian Mathematical Surveys, 52(6):1191, 1997.
[13] Vladimir Kolmogorov. Blossom v: a new implementation of a mini-

mum cost perfect matching algorithm. Mathematical Programming

Computation, 1:43–67, 2009.
[14] Mikkel V Larsen, Xueshi Guo, Casper R Breum, Jonas S Neergaard-

Nielsen, and Ulrik L Andersen. Deterministic multi-mode gates on
a scalable photonic quantum computing platform. Nature Physics,
17(9):1018–1023, 2021.

[15] Jin-Peng Li, Jian Qin, Ang Chen, Zhao-Chen Duan, Ying Yu,
YongHeng Huo, Sven Hofling, Chao-Yang Lu, Kai Chen, and Jian-Wei
Pan. Multiphoton graph states from a solid-state single-photon source.
ACS Photonics, 7(7):1603–1610, 2020.

[16] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–
1078, 1996.

[17] Lars S Madsen, Fabian Laudenbach, Mohsen Falamarzi Askarani,
Fabien Rortais, Trevor Vincent, Jacob FF Bulmer, Filippo M Miatto,
Leonhard Neuhaus, Lukas G Helt, Matthew J Collins, et al. Quantum
computational advantage with a programmable photonic processor.
Nature, 606(7912):75–81, 2022.

[18] Evan Meyer-Scott, Nidhin Prasannan, Ish Dhand, Christof Eigner,
Viktor Quiring, Sonja Barkhofen, Benjamin Brecht, Martin B Plenio,
and Christine Silberhorn. Scalable generation of multiphoton entan-
gled states by active feed-forward and multiplexing. Physical Review

Letters, 129(15):150501, 2022.
[19] Peter W Shor. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM review, 41(2):303–
332, 1999.

[20] Suhas Vittal, Poulami Das, and Moinuddin Qureshi. Astrea: Accu-
rate quantum error-decoding via practical minimum-weight perfect-
matching. In Proceedings of the 50th Annual International Symposium

on Computer Architecture, pages 1–16, 2023.
[21] Jianwei Wang, Fabio Sciarrino, Anthony Laing, and Mark G Thomp-

son. Integrated photonic quantum technologies. Nature Photonics,
14(5):273–284, 2020.

[22] Hezi Zhang, Jixuan Ruan, Hassan Shapourian, Ramana Rao Kompella,
and Yufei Ding. Oneperc: A randomness-aware compiler for photonic
quantum computing. In Proceedings of the 29th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 3, pages 738–754, 2024.
[23] Hezi Zhang, Anbang Wu, Yuke Wang, Gushu Li, Hassan Shapourian,

Alireza Shabani, and Yufei Ding. Oneq: A compilation framework for
photonic one-way quantum computation. In Proceedings of the 50th

Annual International Symposium on Computer Architecture, pages
1–14, 2023.

[24] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-
Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu,
et al. Quantum computational advantage using photons. Science,
370(6523):1460–1463, 2020.

3

Pauli Check Sandwiching for Quantum Characterization
and Error Mitigation during Runtime

Joshua Gao1, Ji Liu2, Alvin Gonzales2, Zain H. Saleem2, Nikos Hardavellas3, Kaitlin N. Smith3⇤
1Department of Computer Science, Virginia Tech, Blacksburg, VA, USA

2Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
3Department of Computer Science, Northwestern University, Evanston, IL, USA

⇤kns@northwestern.edu

Abstract—This work presents a novel quantum system char-
acterization and error mitigation framework that applies Pauli
check sandwiching (PCS). We motivate our work with prior
art in software optimizations for quantum programs like noise-
adaptive mapping and multi-programming, and we introduce
the concept of PCS while emphasizing design considerations for
its practical use. We show that by carefully embedding Pauli
checks within a target application (i.e. a quantum circuit), we can
learn quantum system noise profiles. Further, PCS combined with
multi-programming unlocks non-trivial fidelity improvements.

I. INTRODUCTION AND MOTIVATION

While the quantum compute stack has improved, existing
quantum system noise still varies cross-chip (Fig. 1) and
hovers above error correction thresholds. Much work has
been dedicated to improving quantum program success. For
example, noise-adaptive mapping is a state-of-art quantum
circuit optimization technique used to place and route quantum
programs on quantum hardware [5]. Noise-aware schemes,
however, depend on accurate calibration data from the quan-
tum computer (QC) provider or from benchmarking. Even in
the case that a snapshot of machine properties were available,
QC noise is observed to fluctuate over time in ways that are
challenging to capture with analytical models.

In our work, we seek alternative methods to determine
the noise profile of a QC when its properties are unknown.
It is desirable to develop characterization techniques with
minimal overheads in terms of quantum processor unit (QPU)
runtime. We are inspired by prior art in multi-programming [1]
and ensemble distributions [6] to explore how parallelization
during runtime can be employed for 1) learning quantum
noise / hardware characterization, 2) fidelity improvements in
program outcomes, and 3) reductions in runtime latency. This
work presents a novel framework that combines the power of
multi-programming with Pauli check sandwiching (PCS) for
QC characterization and error mitigation. Multi-programming
is a technique for parallelized quantum circuit execution while
PCS is an error mitigation strategy that utilizes post-selection
to reduce errors in quantum circuit outcomes. Our techniques
intelligently embed PCS into quantum applications. These
programs are then simultaneously executed across a QPU for
noise profile characterization. Resulting characterization data
adaptively mitigates noisy outcomes within individual thread
outcomes. Knowledge of the QPU’s best regions creates a

Fig. 1. Example QPU with 20 regions (10 qubits/region) of unique 1q error
rates, p 2 [0.0005, 0.01], and 2q errors, 2p. PCS-based characterization with
multi-programmed circuits learns the QPU’s unknown noise properties.

weighted ensemble result with non-trivial gain, found to be
up to a 25% fidelity improvement in our reported results.

II. PAULI CHECK SANDWICHING

We rely on a technique called ‘Pauli Check Sandwiching’
(PCS) to detect and mitigate errors [2]–[4]. In our work,
we also find that PCS is a powerful tool for guiding QC
characterization. As seen in Fig. 2, PCS surrounds a payload
circuit, U , with controlled Pauli operator checks. Errors on
U can be detected on an ancilla through phase kickback. It
is important that the relationship R1UL1 = U holds so the
introduced checks do not disturb the original payload circuit
semantics.

Recognizing that all errors can be decomposed into Pauli
operators is a key concept in understanding PCS. By cleverly
constructing Pauli sandwich checks dependent on U , anti-
commutativity relations between the errors and checks can
reveal errors in the ancilla qubits. Measuring 1 in any an-
cillas indicates that phase kickback occurred, meaning anti-
commutation between the Paulis, and thus, a present error. As
part of the PCS protocol, we discard this error-corrupted shot,
leading to an increase in final distribution fidelity of U .

Practical application of PCS requires consideration of trade-
offs. First, determining the Pauli unitary used in the check
increases in complexity with the circuit. Second, Pauli check
logic must be decomposed into the supported gate set of the
QC. Third, the overhead of adding PCS into the circuit must
not outweigh the corrective benefit in terms of gate error. We
consider these constraints in our solution.

Fig. 2. General PCS circuit layout. The red unitaries represent the Pauli
checks that sandwich the main payload circuit. Measurement of the ancillas
provide detection of errors that occurred in the payload circuit.

III. QC CHARACTERIZATION AND ERROR MITIGATION
WITH PCS

With the PCS protocol, we can 1) learn the noise profile of
the QC and 2) increase circuit fidelity by eliminating the states
with errors. In our work, we assume that the number of qubits
on chip is larger than the number of logical qubits required for
an application. Further, we assume no prior knowledge of the
noise profile on-chip, and we attempt to maximize hardware
utilization. We inject PCS into our target application, but only
single-qubit checks on edge qubits are employed to minimize
PCS gate count overhead. To maximally utilize hardware via
multi-programming, a QC with n physical qubits holds

threads = bn/(qalgorithm + qancilla)c (1)

instances of a circuit running in parallel. In this equation, q
indicates qubits, both algorithm and ancilla, that are in the
logical quantum circuit.

Assuming the same shot budget in each each local thread,
values of the checks (i.e. PCS ancilla measurements of 1) are
used during post processing to filter error-corrupted outcomes
from each local thread’s measurement distribution. This pro-
cess creates a vector of error-mitigated counts for each thread,
ci. Circuits that encounter more noise will discard a greater
count of shots. Discarded shot count for each local thread is
represented with the scalar ri. The percentage of discarded
measurement outcomes for each thread,

di =
ri

shotsi
, (2)

gives insight into the underlying noise profile of the QC when
different regions are compared. Each local di is then used as
a weight that scales ci to create si:

si = ci ⇤
min(d)

di
. (3)

In Eqn. 3, min(d) represents the minimum percentage of
discarded shots from all the parallel threads. A cumulative
distribution, S, is created from the sum of the si vectors from
the PCS-protected local threads,

S =
X

si. (4)

Fig. 3. Differences between fidelity measurements of a circuit with no PCS
(base) vs. PCS protection. 10,000 shots were used for both circuits, and fidelity
improvement was determined to be 25% (left) and 18.75% (right).

Fig. 4. Shots removed / total shots as error rates increase. 10,000 shots on a
GHZ circuit were executed for every error rate (60 total).

IV. EXPERIMENTAL RESULTS

We simulated the fidelity rates of PCS in both a GHZ
/ sensing circuit and Toffoli circuit to concretely measure
the improvement. We expand the Fig. 1 model QC and
study a system with 60 10-qubit regions where single-qubit
depolarizing noise p 2 [0.0005, 0.03] and two-qubit gates are
2p. We find that PCS not only mitigates error in individual
circuit distributions – check data can also be used to intel-
ligently combine the results of multiple threads cross-QPU,
demonstrating measurable noise reductions in final outcomes.
Fig. 3 shows our results, detailing a multiple percentage point
increase in fidelity when multi-programmed applications are
protected with PCS and a cumulative distribution is created
from local results weighted by check data. Even with only
the edge qubits protected, a measurable benefit results. Fig. 4
documents the relationship between discarded shots and error
rate, illustrating PCS’s potential for QC error characterization.
We believe this suggests that PCS has additional promise to
guide efficient qubit mapping.

V. ACKNOWLEDGMENTS

JL, AG, and ZHS acknowledge support by the Q-NEXT
Center. NH was partially supported by NSF CCF-2119069.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable

worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.
The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the
DOE Public Access Plan. http://energy.gov/downloads/doe-
public-access-plan.

REFERENCES

[1] Poulami Das, Swamit S Tannu, Prashant J Nair, and Moinuddin Qureshi.
A case for multi-programming quantum computers. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 291–303, 2019.

[2] Alvin Gonzales, Ruslan Shaydulin, Zain H Saleem, and Martin Suchara.
Quantum error mitigation by pauli check sandwiching. Scientific Reports,
13(1):2122, 2023.

[3] Quinn Langfitt, Ji Liu, Benchen Huang, Alvin Gonzales, Kaitlin N Smith,
Nikos Hardavellas, and Zain H Saleem. Pauli check extrapolation for
quantum error mitigation. arXiv preprint arXiv:2406.14759, 2024.

[4] P. Li, J. Liu, A. Gonzales, Z. Saleem, H. Zhou, and P. Hovland. Qutracer:
Mitigating quantum gate and measurement errors by tracing subsets of
qubits. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA), pages 103–117, 2024.

[5] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong,
and Margaret Martonosi. Noise-adaptive compiler mappings for noisy
intermediate-scale quantum computers. In Proceedings of the twenty-
fourth international conference on architectural support for programming
languages and operating systems, pages 1015–1029, 2019.

[6] Swamit S Tannu and Moinuddin Qureshi. Ensemble of diverse mappings:
Improving reliability of quantum computers by orchestrating dissimilar
mistakes. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 253–265, 2019.

Quantum Tape and Stack Data Structures
Ulrik de Muelenaere and Peter M. Kogge

University of Notre Dame
Notre Dame, IN, USA

udemuele@nd.edu, kogge@nd.edu

q0 q1 q2 q3

q7 q6 q5 q4

Fig. 1. A quantum tape of n = 8 qubits. The qubits that occupy the first
dn/2e positions of the tape are shown in the top row, with the remaining
qubits in the bottom row. To shift every qubit one position to the right, as
indicated by the dotted arrows, requires two layers of SWAP gates: those shown
as solid arrows, followed by the dashed arrows.

I. INTRODUCTION

Quantum data structures, that is, data structures in quantum
superposition, have been studied in the context of higher-
level quantum programming languages [1], [2]. However,
in the near term, we see value in data structures with a
straightforward implementation as quantum circuits, which can
be used directly in the circuit model without overhead.

In this work, we propose one such data structure: a quantum
tape, akin to a classical Turing machine tape. By adopting
a specific convention, this can also be used as a stack data
structure.

We explore the use of quantum tapes to evaluate a sequence
of instructions—a program—encoded in a quantum state. A
potential application of this is using Grover’s algorithm to
search for programs with a desired property.

II. QUANTUM TAPES AND STACKS

We first introduce the quantum tape data structure. Like the
tape in a Turing machine, a “head” points at a single qubit
and can be moved left or right, or equivalently, the entire tape
can be shifted right or left. Unlike a Turing machine tape, a
quantum tape is finite and forms a loop.

Fig. 1 pictures a quantum tape, with the logical order of
the qubits indicated by dotted arrows. The figure shows how
the RSHIFT operation, which shifts every qubit one position
to the right, can be implemented as two layers of SWAP gates.
The inverse operation, LSHIFT, simply reverses the two layers
of SWAPs. The tape only requires linear connectivity between
qubits in the hardware, in order to execute the required SWAPs.
Adjacent qubits in the tape need not be physically adjacent,
as the first dn/2e qubits of the tape are physically interleaved
with the remaining bn/2c qubits. This arrangement works for
tapes of even or odd size.

A quantum tape can be used as a stack by using the
following conventions. We consider qubit q0 to be the top of

c0

c1

c2

q0

q4

q1

q3

q2

RSHIFT LSHIFT

Fig. 2. A quantum circuit to apply a single operation encoded in the opcode
register ci, to the 5-qubit tape qi. The tape qubits are shown in physical rather
than logical order, but indexed in logical order.

the stack. The RSHIFT operation is used to push |0i onto the
stack, as long as the maximum capacity n is not exceeded, and
the tape was initialized to |0i⌦n. Pushing any other state U |0i
can be achieved by RSHIFT followed by the unitary operation
U .

The pop operation on a classical stack is not reversible, as it
discards the top element. For a quantum stack, since the push
operation pushes a |0i onto the stack, its inverse would be to
pop |0i from the stack. Under this convention, the programmer
must ensure that q0 is uncomputed to the known state |0i
before the LSHIFT operation is applied.

If the decision of whether to push or pop is classical,
then although individual values are quantum, the number of
such values held within the stack is entirely classical. The
same effect could be achieved by renumbering the qubits
in the classical control system. If the decision is made by
quantum control, however, the data structure itself can be in a
superposition, so a quantum register is needed if one desires
to keep track of the number of elements in the stack.

It is straightforward to extend this to a stack or tape of k-
qubit registers instead of a tape of single qubits. Depending
on the connectivity of the hardware and the requirements of
the program, one could either use k separate tapes, or consider
every group of k qubits in the tape to be a single item, and
execute LSHIFT or RSHIFT operations in multiples of k.

III. PROGRAM ENCODING AND SEARCH

We construct a quantum circuit that can execute instructions
encoded in a quantum state. Previous designs for such quan-
tum stored-program protocols focus on applying an arbitrary
unitary operator exp(�i✓B), where either the parameter ✓ [3],
[4] or the Hermitian operator B [5] is encoded in a quantum

p0:2

p3:5

p6:8

p9:11

p12:14

q0

q4

q1

q3

q2

H

H

H

H

H

U

U

U

U

U

U

U

U
U U

†

U
†

U
†

U
†

U
†

U
†

U
†

U
†

U
†

G

Fig. 3. Grover’s algorithm circuit (with one iteration) to find a sequence of 5 instructions that set the top three elements of the stack to |1i. The program
register pi consists of 5 3-qubit opcodes. U is the single-operation circuit shown in Fig. 2, and G is the Grover diffusion operator. The part between the
barriers is the oracle function which executes the instructions encoded in the program register, flips the phase if the final state is correct, then executes the
program in reverse to uncompute the state.

state. Both these approaches require multiple redundant copies
of the encoded instruction1, either because executing the stored
instruction is stochastic and may have to be repeated if it fails
[3], [4], or it is approximate with error inversely proportional
to the number of copies [5]. In either case, requiring multiple
independent encoded instructions reduces the ability to truly
use these instructions as quantum data, due to the no-cloning
theorem. In contrast, we select a finite set of operators without
parameters, each represented by an opcode. We could still
approximate any unitary if this set is universal, e.g. with a
set of Clifford group generators and the T gate.

The opcode can be encoded in the computation basis in a
quantum register. In our experiment, |0i is RSHIFT (or “push”),
|1i is LSHIFT (or “pop”), |2i is SWAP, |3i is X , |4i is CNOT,
|5i is CCNOT, and any other state results in a no-op. This set
of operations is inspired by a classical stack machine, and is
sufficient to compute any classical reversible function. Fig. 2
shows a circuit to evaluate a single operation, controlled by
the opcode register. A k-qubit operation is applied to the first
k qubits on the tape, similar to a stack machine that would
operate on the top of the stack. Note that unlike the classical
stack machine, the opcode register could be in a superposition
state, in which case the tape will end up in a superposition
after applying this circuit.

This shows that we can encode an instruction as quantum
data, and evaluate it using a unitary circuit. The technique
easily generalizes to encoding and evaluating a sequence of
instructions, i.e. a program (without control flow, although
conditional execution is possible using the controlled oper-
ations included in the instruction set). This can be useful if
one needs to evaluate a program as part of an oracle for a
quantum algorithm.

For example, one potential application is using Grover’s
algorithm [6] to speed up a search through the space
of all possible instruction sequences. We demonstrate this

1This can be redundant in space, by encoding multiple copies of the state
into different quantum registers, or in time, by re-encoding the same register
multiple times.

by constructing a circuit, shown in Fig. 3, to search for
programs that set the top three elements of the stack to
|1i, from all possible 5-instruction programs. We simulated
this circuit using Qiskit. As expected, the most common
measurement results (probability 2.7 ⇥ 10�4 each) corre-
spond to the 12 programs like (X, RSHIFT, X, RSHIFT, X) or
(X, SWAP, CNOT, RSHIFT, CCNOT), while all other results have
probability 3.0 ⇥ 10�5. Using the optimal number of Grover
iterations, ⇡

4

p
25⇥3/12 ⇡ 41, increases this difference, giving

a 99.97% probability to measure one of the desired programs
(ignoring noise).

IV. FUTURE WORK

In the program search experiment, the program register
takes on a state which is a superposition of programs. This
appears to be a restricted case of what is known as quantum

control [2], [7] or quantum alternation [8]: control flow in a
quantum program that depends on quantum state. This topic
is not yet fully understood, in particular regarding a physical
realization, and we hope to explore how these superpositions
of instruction sequences relate to the more general concept.

We also see the potential to use quantum tapes to implement
quantum oracles for various classical algorithms that rely on
a stack, such as pushdown automota to parse context-free
grammars, or algorithms based on depth-first search.

REFERENCES

[1] C. Yuan and M. Carbin, “Tower: Data structures in quantum superposi-
tion,” Proceedings of the ACM on Programming Languages, vol. 6, no.
OOPSLA2, pp. 259–288, Oct. 2022, doi:10.1145/3563297.

[2] A. Sabry, B. Valiron, and J. K. Vizzotto, “From symmetric pattern-
matching to quantum control,” in Foundations of Software Science and

Computation Structures, C. Baier and U. Dal Lago, Eds. Cham:
Springer International Publishing, 2018, vol. 10803, pp. 348–364, doi:
10.1007/978-3-319-89366-2 19, arXiv:1804.00952 [cs].

[3] G. Vidal, L. Masanes, and J. I. Cirac, “Storing quantum dynamics
in quantum states: Stochastic programmable gate for U(1) operations,”
Physical Review Letters, vol. 88, no. 4, p. 047905, Jan. 2002, doi:
10.1103/PhysRevLett.88.047905.

[4] J. Kim, Y. Cheong, J.-S. Lee, and S. Lee, “Storing unitary operators in
quantum states,” Physical Review A, vol. 65, no. 1, p. 012302, Dec. 2001,
doi:10.1103/PhysRevA.65.012302.

https://doi.org/10.1145/3563297
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1007/978-3-319-89366-2_19
https://arxiv.org/abs/1804.00952
https://doi.org/10.1103/PhysRevLett.88.047905
https://doi.org/10.1103/PhysRevLett.88.047905
https://doi.org/10.1103/PhysRevA.65.012302

[5] M. Kjaergaard, M. E. Schwartz, A. Greene, G. O. Samach, A. Bengtsson,
M. O’Keeffe, C. M. McNally, J. Braumüller, D. K. Kim, P. Krantz,
M. Marvian, A. Melville, B. M. Niedzielski, Y. Sung, R. Winik, J. Yo-
der, D. Rosenberg, K. Obenland, S. Lloyd, T. P. Orlando, I. Marvian,
S. Gustavsson, and W. D. Oliver, “Programming a quantum computer
with quantum instructions,” Dec. 2020, arXiv:2001.08838 [quant-ph].

[6] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory

of Computing - STOC ’96. Philadelphia, Pennsylvania, United States:
ACM Press, 1996, pp. 212–219, doi:10.1145/237814.237866.

[7] B. Valiron, “Semantics of quantum programming languages: Classical
control, quantum control,” Journal of Logical and Algebraic Methods in

Programming, vol. 128, p. 100790, Aug. 2022, doi:10.1016/j.jlamp.2022.
100790.

[8] C. Bădescu and P. Panangaden, “Quantum alternation: Prospects and
problems,” Electronic Proceedings in Theoretical Computer Science, vol.
195, pp. 33–42, Nov. 2015, doi:10.4204/EPTCS.195.3, arXiv:1511.01567
[quant-ph].

https://arxiv.org/abs/2001.08838
https://doi.org/10.1145/237814.237866
https://doi.org/10.1016/j.jlamp.2022.100790
https://doi.org/10.1016/j.jlamp.2022.100790
https://doi.org/10.4204/EPTCS.195.3
https://arxiv.org/abs/1511.01567

A Formalization of Measurement Commuting
Unitaries

Ulrik de Muelenaere1, Sinan Pehlivanoglu2, Amr Sabry2, Peter Kogge1

1University of Notre Dame
2Indiana University Bloomington

I. INTRODUCTION

Nielsen and Chuang [1] state the deferred measurement
principle as follows: “Measurements can always be moved
from an intermediate stage of a quantum circuit to the end
of the circuit; if the measurement results are used at any
stage of the circuit then the classically controlled operations
can be replaced by conditional quantum operations.” This
makes it explicit that measurements can be moved over the
control (qu)bits of controlled operations, but leaves it implicit
that the same works for other classical operations, which
can be rewritten as reversible operations, which then have a
straightforward mapping to unitary quantum operators.

Dynamic compilation and execution of hybrid quantum
algorithms heavily motivates the need to further understand
measurement commutation, more specifically, understanding
under what conditions a measurement may be moved earlier in
a quantum circuit. The need for hybrid algorithms commonly
arise from the lack of scale and fidelity concerns in the NISQ
era. Larger algorithms that can not be practically embedded
into a single quantum routine are divided into a sequence
of classical and quantum subroutines. However, each switch
between a classical and a quantum subroutine comes with
a cost in the form of job scheduling, availability, classical
communication overhead and bandwidth, that are not often
considered. According to the results from IBM [2], a quantum
subroutine that takes less than 3 seconds, can spend upwards
of 4 minutes in a job queue. As a result, an iterative variational
quantum algorithm with multiple iterations of a quantum
subroutine can end up spending orders of magnitude more
time waiting in a queue than executing. Better understanding
how a hybrid routine can be “cut” would allow compilers to
choose the most efficient sequence to be executed. The hybrid
divide that balances classical and quantum trade-offs might
very well be different from what the programmer expected.

The deferred measurement principle, being a statement
about circuit equivalence, can always be applied in reverse,
so that measurements can be moved before controls, or before
unitaries which are equivalent to classical reversible opera-
tions. However, it remains unclear what quantum operations
will commute with a measurement. We aim to formalize the
rules for measurement commutation.

U = U
0

Fig. 1. We say that a pair of operators (U,U 0) commutes with a measurement
when this circuit equivalence holds.

II. RESULTS

When discussing the commutation of a unitary operator
with a measurement, the pre-measurement operator U cannot
always be equal to the post-measurement operator U

0, if
only because U

0 usually operates on classical data while U

operates on quantum data, as shown in Fig. 1. Therefore it is
not a commutation in the strict sense, and we use the term
measurement commutation to describe it.

Formally, we say that a pair of unitary operators (U,U 0)
commute with projective measurement defined by observ-
able M =

P
m mPm (or simply that (U,U 0) measurement-

commute, when the measurement is clear from context) if and
only if the final states are equal, i.e.

X

m

PmU⇢U
†
P

†
m =

X

m

U
0
Pm⇢P

†
mU

0†
, (1)

for any density operator ⇢.
The class of unitary operators that measurement-commute

consists of eigenvalue permutations, which we define below.
Let E be the set of eigenvalues of observable M , let

dm denote the degeneracy degree of eigenvalue m 2 E,
and let {|mii | m 2 E, i = 1, . . . , dm} be a basis for
the Hilbert space such that the measurement operators are
Pm =

Pdm

i=1 |mii hmi|.
We say that an operator U is an eigenvalue permutation

with respect to the observable M if it can be written as

U =
X

m2E

dmX

i,j=1

hmi|Um|mji |�(m)ii hmj| , (2)

where � : E ! E is a permutation of the eigenvalues with
the property that d�(m) = dm, and for every m 2 E, Um is
a unitary operator on the subspace spanned by {|mii | i =
1, . . . , dm}.

If each eigenvalue m 2 E has the same degree of degener-
acy dm = d, then an eigenvalue permutation has the form

U =
X

m2E

|�(m)i hm|⌦ Um, (3)

=

H T
† T T

† T H

T
†

T
† S

T

Fig. 2. A decomposition of the Toffoli gate.

which shows that eigenvalue permutations are represented
by block matrices, where the overall structure is a permu-
tation matrix on eigenvalues (preserving degeneracy), and the
nonzero blocks are the unitaries Um.

For example, the block matrix

U =

0

BB@

U00 0 0 0
0 0 U10 0
0 0 0 U11

0 U01 0 0

1

CCA (4)

is an eigenvalue permutation with respect to a computational
basis measurement on the first two qubits. However, it is not
an eigenvalue permutation with respect to a measurement of
only the first qubit, because when considered as a 2⇥2 block
matrix

U =

0

BB@

U00 0 0 0
0 0 U10 0
0 0 0 U11

0 U01 0 0

1

CCA , (5)

the overall structure is not a permutation, and the blocks are
not unitary.

Our main result follows.

Theorem 1. A pair of unitary operators (U,U 0) commute with
a projective measurement with observable M , if and only if
both are eigenvalue permutations with respect to M , that differ
only in a phase ✓m 2 R per eigenvalue, i.e.

U =
X

m2E

e
i✓m

dmX

i,j=1

hmi|Um|mji |�(m)ii hmj| , (6a)

U
0 =

X

m2E

dmX

i,j=1

hmi|Um|mji |�(m)ii hmj| . (6b)

At least two known results are special cases of Theorem 1:
• A controlled-U operator commutes with a computational

basis measurement of any of its control qubits [1, Exer-
cise 4.35].

• A pair of unitaries (U,U 0) of the form

U =
X

m2E

e
i✓m |�(m)i hm| , U

0 =
X

m2E

|�(m)i hm|

(7)
commute with a measurement of the entire system. In this
case, U 0 is any permutation, i.e. any classical reversible
operator, and U = U

0
D, where D is a diagonal operator

with entries given by e
i✓m .

III. FUTURE WORK

We point out that measurement-commuting unitaries may
not be compromised of a single gate. Bian and Selinger
formalized the generators for 2-qubit [3] and n-qubit [4]
Clifford+T operators. Since the Clifford group is defined as the
group of unitaries that normalize Pauli operators, any block or
gate that is conjugate under the members of the Clifford group,
per our remark about permutation matrices, will measurement-
commute as a block. One might also note that the rotation gate
Rx(

⇡
4) = HTH does not commute with a measurement in the

computational basis. However, the Toffoli gate, a permutation
matrix in the Z basis, which can be decomposed as in Fig. 2
to contain a similar block of T gates conjugate under the
Hadamard, does commute. It isn’t immediately obvious to us
why this block measurement-commutes, when it contains gates
and blocks that do not. We hope to investigate and formalize
block commutation in future work.

Van den Nest [5] distinguishes between strong and weak
classical simulation of a quantum circuit: the former requires
computing the probability distribution of measurement out-
comes, while the latter merely requires sampling from said
distribution. The final result of [5] is a class of n-qubit circuits
that can be efficiently simulated in the weak sense, when
applied to the input |0i⌦n and measured in the computation
basis. These circuits consist of a single layer of arbitrary
single-qubit rotations, followed by an arbitrary block U of
Toffoli and diagonal gates. These unitaries U are exactly those
of the form given in (7), and the given simulation method is
equivalent to commuting the measurement before U , while
removing the diagonal gates to leave the U

0 given in (7). In
other words, Theorem 1 leads to an alternative proof for the
result from [5]. This suggests that, using this theorem, we can
find a more general class of circuits that can be efficiently
simulated, in the weak sense, using a similar technique.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, 10th ed. Cambridge: Cambridge University Press, 2010.

[2] P. D. Nation, A. A. Saki, S. Brandhofer, L. Bello, S. Garion, M. Treinish,
and A. Javadi-Abhari, “Benchmarking the performance of quantum
computing software,” 2024, arXiv:2409.08844 [quant-ph].

[3] X. Bian and P. Selinger, “Generators and relations for 2-qubit Clifford+T
operators,” Electronic Proceedings in Theoretical Computer Science, vol.
394, p. 13–28, Nov. 2023, doi:10.4204/eptcs.394.2.

[4] P. Selinger, “Generators and relations for n-qubit Clifford operators,”
Logical Methods in Computer Science, vol. Volume 11, Issue 2, Jun.
2015, doi:10.2168/lmcs-11(2:10)2015.

[5] M. Van den Nest, “Classical simulation of quantum computation, the
Gottesman-Knill theorem, and slightly beyond,” Quantum Information &
Computation, vol. 10, no. 3, pp. 258–271, Mar. 2010, arXiv:0811.0898
[quant-ph].

https://arxiv.org/abs/2409.08844
https://doi.org/10.4204/eptcs.394.2
https://doi.org/10.2168/lmcs-11(2:10)2015
https://arxiv.org/abs/0811.0898

Characterizing Equivalences Between Shallow Quantum Circuit Models

Ben Foxman, Akshat Yaparla

1 Overview

Quantum computers leverage principles of quantum me-
chanics, such as superposition and entanglement, to per-
form computational tasks that can be intractable for classi-
cal computers. Quantum computational models, while dis-
tinctly di↵erent from their classical counterparts, draw sig-
nificant inspiration from them. The quantum circuit model,
for instance, is a generalization of classical circuits where lo-
cal unitary operations replace traditional logic gates. This
model is by far the most widely used framework for quan-
tum computing.

Some quantum computational models, however, have no
classical analogues, making them particularly intriguing.
The “feedforward” model [5] is one such example, where
classical measurement outcomes control future gate appli-
cations. This model enables separate analysis of classical
computational costs during quantum circuit execution.

While both models are universal for quantum computa-
tion, the feedforward model has surprising advantages when
the quantum computer is restricted to constant-depth com-
putation. The feedforward model enables implementations
of Cli↵ord Circuits, PARITY functions, and “Grover-like”
oracles[3]—all impossible in constant-depth quantum cir-
cuits—by leveraging classical post-processing of measure-
ment outcomes. The constant-depth regime is particularly
important for NISQ (Noisy Intermediate Scale Quantum)
devices, where low gate fidelities impose heavy restrictions
of the depth of the circuit.

Although depth-limited, certain NISQ platforms can
leverage the benefits of the feedforward model. For in-
stance, some superconducting devices already support real-
time feedforward, which can be used to apply non-local
gates [7, 8]. However, such devices often have limited con-
nectivity, i.e. qubits can only interact with their neighbors
[1]. Conversely, other near-term platforms, such as those us-
ing neutral atoms, allow multi-qubit gates such as FANOUTs
(via global Rydberg pulses) [9] but are less conducive to
feedforward implementation.

Motivated by these experimental setups, we investigate
the relationship between two low-depth models of quantum
computation. The first model, which we call QNC0

IM, de-
notes the class of constant depth quantum circuits with
feedforward, where unitaries preceding a set of measure-
ment outcomes M may be parameterized by an arbitrary
TC0 function of M. We will also use QNC0

IM(G) when the
interactions on the quantum computer are constrained by
some graph topology G. We note that this model is very
similar to the “LAQCC” model defined in [3].

The second model, QNC0
f , has been well-studied in the lit-

erature. It consists of constant-depth quantum circuits over
single qubit gates and unbounded FANOUT gates. It has been
shown that the inclusion of FANOUT gates adds a surprising
amount of power to the constant-depth circuit model, capa-
ble of implementing functions such as Mod q and Threshold
[4]. We will also consider restricted variants of QNC0

f , for
example where the FANOUTs gates are constrained to have
some structure (i.e. they cannot act on arbitrary qubits).

In fact, we can show that these two models are equivalent
in a tight sense: any circuit family over one model can be
translated into a circuit family other the other (see Figure
1), i.e.

QNC0
IM = QNC0

f (1)

We give a high-level overview of the proof (along with more
formal definitions) in the following section. We are also
able to show a version of this equivalence for some of the
more restricted models mentioned earlier. For example,
QNC0

IM(Z2) = QNC0
f (two-qubit nearest-neighbor interac-

tions), and QNC0
f remains unchanged even when FANOUT

gates are restricted to nearest-neighbor gates on a line.
In the process of these proofs, we analyze the fine-grained
space and time costs required to map between these models
(Section 3).

Finally, we aim to further investigate the number of mea-
surement rounds required in feedforward applications. It
is known that Cli↵ord circuits can be implemented using
only one round of measurement, even when constrained to
two-dimensional nearest-neighbor gates [3]. However, non-
Cli↵ord circuits may require more rounds of measurements,
with the specific number of rounds highly dependent on the
circuit in question [6]. Through Equation 1, reducing the
number of measurement rounds corresponds to decreasing
the FANOUT costs in circuits.

Overall, our complexity-theoretic analysis allows us to
rigorously characterize, and unify, practically-motivated
models of quantum computation. As quantum hardware
continues to progress, our results will help inform algo-
rithm design and hardware development, bridging the gap
between theoretical understanding and practical implemen-
tations.

2 Proof Outline

We now provide some of the formalism behind our defini-
tions, and outline the proof strategy. We first define QNC0

IM:

Definition 1 (QNC0
IM). Families of quantum circuits on n

qubits with the following structure: Initialize at most p(n)
many ancilla qubits in the all-zero state (in addition to the

n-qubit input, p is some polynomial).

1

Figure 1: Examples of circuits from the two main classes we study. The bottom line of the QNC0
IM circuit represents

a classical memory, where subsequent quantum gates are controlled on bits in the memory (two lines). Dotted lines
represent barriers between layers in the circuits.

1. Apply a constant depth, polynomial size quantum cir-

cuit over some fixed universal gate set G consisting of

1 and 2 qubit gates.

2. Measure a subset of the qubits in the Z-basis, tracing

out the measured qubits, i.e. a destructive measure-

ment.

3. Repeat for O(1) iterations.

Moreover, gates in the ith iteration may be parametrized

by the parity of a subset of the measurement outcomes in

iterations 1, 2, . . . , i� 1.

Now, we outline the proof. First, to show QNC0
f ✓

QNC0
IM, we use a gadget that uses a mid-circuit measure-

ments and classical computation that simulates the func-
tion of the FANOUT gate. For the gadget to simulate the
FANOUT gate, that the mixed state after the gate and af-
ter the gadget are applied are the same. Since FANOUT is a
unitary operator, we just have to show that the pure state
after FANOUT and the gadget are applied are identical, with
the measured qubits traced out. For a FANOUT acting on n

qubits, we require an ancilla register of n � 1 qubits that
will eventually be measured. Denote the ith ancilla qubit
as |aii. In addition, denote the ith input register to FANOUT

as |qii. We initialize |q1i |�i, while all other registers are
initialized to |0i. The gadget can then be constructed as
follows.

1. Apply a Hadamard transform on registers |q2i through
|qni

2. For i 2 [n� 1] Apply a cnot gate on the ancilla qubit
|aii = |0i with |qii as a control.

3. For i 2 [n� 1] Apply a cnot gate on the ancilla qubit
|aii = |0i with |qi+1i as a control.

4. Measure the ancilla register {|a1i, . . . , |an�1i} into the
classical register {c1, . . . , cn�1}.

5. Using an AC0[�] circuit, compute n� 2 parities

pi =
iM

k=1

ck for 2 i n� 1

6. Apply X
c1 on qubit |q2i Using the classical parities

pi computed in the previous step, apply X
pi on qubit

|qi+1i for all 2 i n� 1.

Let the state before the gadget is applied by | i = (a|0i+
b|1i)|0n�1i, where a|0i+b|1i is the qubit in the first register
we wish to FANOUT. When the measured qubits of the gadget
are traced out, the state obtained is | 0i = a|0ni+ b|1ni.

For the reverse direction, we treat the classical memory
used to store measurement information as an additional
quantum register. Then, for all allowed classical gates, we
can construct an equivalent quantum gate. For example,
we can use a TOFFOLI gate to simulate classical AND and OR

gates up to depth 3, and all unbounded PARITY gates can
be simulated with a FANOUT gate in depth 3. Then, for all
unitaries that are controlled by classical data, we can cre-
ate equivalent unitaries that are controlled by the quantum
memory meant to simulate classical ones. This new QNC0

f

circuit simulates the mid-circuit measurement circuit before
and after all classical and quantum operations are applied.

3 Further Remarks

Finally, we add a few remarks regarding the fine-grained
equivalences mentioned earlier, and consider two restricted
versions our our main models—locality constraints on the
feedforward circuit (for example, QNC0

IM(Z2)) and a re-
stricted action of the FANOUT gates in QNC0

f . Surprisingly,
we can demonstrate that these models recover the full power
of feedforward (or FANOUT) computation. When imposing
locality constraints, we can demonstrate that arbitrary lay-
ers of FANOUT gates can be performed in parallel, using a
version of the Bell-State routing algorithm described in [2].
When restricting the action of FANOUT gates (for example,
only allowing FANOUTs to be performed on horizontal or
vertical stretches of qubits), we must be strategic about the
locations of the ancillas used as inputs in the unitary formu-
lation of the classical feedforward circuit. The equivalence
of these models under such restrictions further highlights
the robustness of the feedforward computational model.

2

References

[1] M. AbuGhanem. IBM Quantum Computers: Evolu-

tion, Performance, and Future Directions. 2024. arXiv:
2410.00916 [quant-ph]. url: https://arxiv.org/
abs/2410.00916.

[2] Michael Beverland, Vadym Kliuchnikov, and Eddie
Schoute. “Surface Code Compilation via Edge-Disjoint
Paths”. In: PRX Quantum 3.2 (May 2022). issn: 2691-
3399. doi: 10 . 1103 / prxquantum . 3 . 020342. url:
http : / / dx . doi . org / 10 . 1103 / PRXQuantum . 3 .

020342.

[3] Harry Buhrman et al. State preparation by shallow

circuits using feed forward. 2024. arXiv: 2307.14840
[quant-ph]. url: https://arxiv.org/abs/2307.
14840.

[4] Peter Hoyer and Robert Spalek. In: Theory of Com-

puting 1.1 (2005), pp. 81–103. issn: 1557-2862. doi:
10.4086/toc.2005.v001a005. url: http://dx.doi.
org/10.4086/toc.2005.v001a005.

[5] Richard Jozsa. An introduction to measurement based

quantum computation. 2005. arXiv: quant - ph /

0508124 [quant-ph]. url: https://arxiv.org/abs/
quant-ph/0508124.

[6] Robert Raussendorf and Hans Briegel. Computational

model underlying the one-way quantum computer.
2002. arXiv: quant - ph / 0108067 [quant-ph]. url:
https://arxiv.org/abs/quant-ph/0108067.

[7] Yongxin Song et al. Realization of Constant-Depth

Fan-Out with Real-Time Feedforward on a Supercon-

ducting Quantum Processor. 2024. arXiv: 2409.06989
[quant-ph]. url: https://arxiv.org/abs/2409.
06989.

[8] L. Ste↵en et al. “Deterministic quantum teleportation
with feed-forward in a solid state system”. In: Nature
500.7462 (Aug. 2013), pp. 319–322. issn: 1476-4687.
doi: 10.1038/nature12422. url: http://dx.doi.
org/10.1038/nature12422.

[9] Karen Wintersperger et al. “Neutral atom quantum
computing hardware: performance and end-user per-
spective”. In: EPJ Quantum Technology 10.1 (Aug.
2023). issn: 2196-0763. doi: 10.1140/epjqt/s40507-
023-00190-1. url: http://dx.doi.org/10.1140/
epjqt/s40507-023-00190-1.

3

Quantum Control of an Oscillator with a Kerr-cat Qubit

Andy Z. Ding
1
,
⇤
Benjamin L. Brock

1
,
†
Alec Eickbusch,

‡
Akshay Koottandavida, Nicholas

E. Frattini,
§
Rodrigo G. Cortiñas, Vidul R. Joshi, Stijn J. de Graaf, Benjamin J.

Chapman,
¶
Suhas Ganjam,

‡
Luigi Frunzio, Robert J. Schoelkopf, and Michel H. Devoret

⇤⇤

Departments of Applied Physics and Physics, Yale University, New Haven, CT, USA

(Dated: October 22, 2024)

A major obstacle to scaling up quantum computers is noise, which causes logical errors and
prevents the reliable execution of quantum algorithms. Quantum error correction (QEC) provides
a path toward fault-tolerant operations [1–4], but this typically comes at the cost of significant
resource overhead, often requiring hundreds of physical qubits per logical qubit [5–9]. Bosonic
codes o↵er a hardware-e�cient alternative to multi-qubit QEC codes by redundantly encoding
quantum information in the large Hilbert space of a harmonic oscillator [10–15]. These codes have
been employed to achieve landmark experimental demonstrations, including beyond break-even
QEC of quantum memories [16–18] and fully-autonomous QEC protocols [19–21]. However, these
experiments rely on an ancilla qubit to control the oscillator and perform quantum error correction,
such that errors on the ancilla can propagate to the logical qubit, limiting its lifetime.

In circuit quantum electrodynamics [22, 23], these realizations of bosonic codes typically
use a microwave cavity as the oscillator and a transmon as the ancilla. The two are cou-
pled dispersively, and since this dispersive interaction is transparent to transmon phase-flip
errors, these QEC protocols are usually only sensitive to transmon bit-flip errors. Although
fault-tolerant error syndrome measurements have been experimentally demonstrated using a
transmon ancilla [24], another approach to achieving fault-tolerance is to use a biased-noise
qubit as an ancilla for bosonic codes [25]. Ideally, the error channel of such an ancilla should
be dominated by phase flips, with a negligible rate of bit flips compared to other rates in the system.

The Kerr-cat qubit (KCQ) has the potential to be exactly such an ancilla due to its promise of
an exponential noise bias [26]. Recent experimental realizations of KCQs have reached a strong
noise bias of about 1000 [27, 28] (corresponding to a bit-flip lifetime of ⇠ 1 ms and phase-flip
lifetime of ⇠ 1 µs), and although this is not exponentially large, there are many possible methods
for further improvement [29–33]. With a strong noise bias and fast single-qubit gates [28, 34],
the only remaining ingredient for using the KCQ as an ancilla for bosonic codes is an entan-
gling operation between the KCQ and an oscillator that enables the measurement of error syndromes.

In this work, we experimentally demonstrate a coherent parametrically-driven conditional dis-
placement (CD) gate between a KCQ and a high-quality-factor microwave cavity, where the cavity
is displaced in one of two directions depending on the state of the KCQ. Combined with single-qubit
gates on the KCQ, this CD gate enables universal quantum control of the cavity [35]. We use this
CD gate to measure the decoherence of the cavity in the presence of the KCQ and discover excess
cavity dephasing due to heating of the KCQ into excited states, an e↵ect that was not previously
predicted. However, by engineering frequency-selective dissipation to counteract this heating [29],
we are able to eliminate this dephasing up to the precision of our measurements. This lack of
dephasing indicates that the two systems do not entangle unless we are actively driving their inter-
action. The Kerr-cat control of a cavity can be applied for fault-tolerant syndrome measurements
of bosonic codes [25], in particular the Gottesman-Kitaev-Preskill code [11] whose error syndromes
can be mapped to an ancilla via CD gates [36–38].

1 These authors contributed equally to this work.
⇤ zhenghao.ding@yale.edu
† benjamin.brock@yale.edu
‡ Present address: Google Quantum AI, Santa Barbara, CA

§ Present address: Nord Quantique, Sherbrooke, QC J1J 2E2,
Canada

¶ Present address: Microsoft Azure Quantum
⇤⇤ michel.devoret@yale.edu

mailto:zhenghao.ding@yale.edu
mailto:benjamin.brock@yale.edu
mailto:michel.devoret@yale.edu

2

[1] P. Shor, Proceedings of 37th Conference on Foundations
of Computer Science , 56 (1996).

[2] E. Knill, R. Laflamme, and W. H. Zurek, Science 279,
342 (1998).

[3] D. Aharonov and M. Ben-Or, SIAM Journal on Comput-
ing 38, 1207 (2008).

[4] A. Y. Kitaev, Annals of Physics 303, 2 (2003).
[5] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.

Cleland, Physical Review A - Atomic, Molecular, and
Optical Physics 86, 032324 (2012).

[6] I. D. Kivlichan, C. Gidney, D. W. Berry, N. Wiebe,
J. McClean, W. Sun, Z. Jiang, N. Rubin, A. Fowler,
A. Aspuru-Guzik, H. Neven, and R. Babbush, Quantum
4, 296 (2020).

[7] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R.
McClean, N. Wiebe, and R. Babbush, PRX Quantum 2,
030305 (2021).

[8] D. Gottesman, Quantum Information and Computation
14, 1338 (2014).

[9] N. P. Breuckmann and J. N. Eberhardt, PRX Quantum
2, 040101 (2021).

[10] I. L. Chuang, D. W. Leung, and Y. Yamamoto, Phys.
Rev. A 56, 1114 (1997).

[11] D. Gottesman, A. Kitaev, and J. Preskill, Physical Re-
view A 64, 10.1103/PhysRevA.64.012310 (2001).

[12] M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert,
J. Salmilehto, L. Jiang, and S. M. Girvin, Phys. Rev. X
6, 031006 (2016).

[13] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, New Journal of
Physics 16, 045014 (2014).

[14] A. Joshi, K. Noh, and Y. Y. Gao, Quantum Science and
Technology 6, 033001 (2021).

[15] W. Cai, Y. Ma, W. Wang, C. L. Zou, and L. Sun, Fun-
damental Research 1, 50 (2021).

[16] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas,
B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang,
M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Na-
ture 536, 441 (2016).

[17] V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsiout-
sios, S. Ganjam, A. Miano, B. L. Brock, A. Z. Ding,
L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H.
Devoret, Nature 616, 50 (2023).

[18] Z. Ni, S. Li, X. Deng, Y. Cai, L. Zhang, W. Wang, Z. B.
Yang, H. Yu, F. Yan, S. Liu, C. L. Zou, L. Sun, S. B.
Zheng, Y. Xu, and D. Yu, Nature 2023 616:7955 616, 56
(2023).

[19] J. M. Gertler, B. Baker, J. Li, S. Shirol, J. Koch, and
C. Wang, Nature 2021 590:7845 590, 243 (2021).

[20] B. de Neeve, T. L. Nguyen, T. Behrle, and J. P. Home,
Nature Physics 2022 18:3 18, 296 (2022).

[21] D. Lachance-Quirion, M.-A. Lemonde, J. O. Simoneau,
L. St-Jean, P. Lemieux, S. Turcotte, W. Wright,
A. Lacroix, J. Fréchette-Viens, R. Shillito, F. Hopf-
mueller, M. Tremblay, N. E. Frattini, J. Camirand Le-

myre, and P. St-Jean, Phys. Rev. Lett. 132, 150607
(2024).

[22] A. Blais, R.-S. Huang, A. Wallra↵, S. M. Girvin, and
R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).

[23] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallra↵,
Rev. Mod. Phys. 93, 025005 (2021).

[24] S. Rosenblum, P. Reinhold, M. Mirrahimi, L. Jiang,
L. Frunzio, and R. J. Schoelkopf, Science 361, 266 (2018).

[25] S. Puri, A. Grimm, P. Campagne-Ibarcq, A. Eickbusch,
K. Noh, G. Roberts, L. Jiang, M. Mirrahimi, M. H. De-
voret, and S. M. Girvin, Physical Review X 9, 041009
(2019).

[26] S. Puri, S. Boutin, and A. Blais, npj Quantum Informa-
tion 3, 1 (2017).

[27] N. E. Frattini, R. G. Cortiñas, J. Venkatraman, X. Xiao,
Q. Su, C. U. Lei, B. J. Chapman, V. R. Joshi, S. M.
Girvin, R. J. Schoelkopf, S. Puri, and M. H. Devoret,
The squeezed kerr oscillator: spectral kissing and phase-
flip robustness (2022), arXiv:2209.03934 [quant-ph].

[28] A. Hajr, B. Qing, K. Wang, G. Koolstra, Z. Pedram-
razi, Z. Kang, L. Chen, L. B. Nguyen, C. Junger,
N. Goss, I. Huang, B. Bhandari, N. E. Frattini, S. Puri,
J. Dressel, A. N. Jordan, D. Santiago, and I. Siddiqi,
High-coherence kerr-cat qubit in 2d architecture (2024),
arXiv:2404.16697 [quant-ph].

[29] H. Putterman, J. Iverson, Q. Xu, L. Jiang, O. Painter,
F. G. Brandão, and K. Noh, Physical Review Letters 128,
110502 (2022).

[30] B. Bhandari, I. Huang, A. Hajr, K. Yanik, B. Qing,
K. Wang, D. I. Santiago, J. Dressel, I. Siddiqi, and A. N.
Jordan, Symmetrically threaded squids as next genera-
tion kerr-cat qubits (2024), arXiv:2405.11375 [quant-ph].

[31] J. Venkatraman, R. G. Cortiñas, N. E. Frattini, X. Xiao,
and M. H. Devoret, Proceedings of the National Academy
of Sciences of the United States of America 121,
10.1073/PNAS.2311241121 (2024).

[32] L. Gravina, F. Minganti, and V. Savona, PRX Quantum
4, 020337 (2023).

[33] D. Ruiz, R. Gautier, J. Guillaud, and M. Mirrahimi,
Phys. Rev. A 107, 042407 (2023).

[34] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada,
S. Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and
M. H. Devoret, Nature 584, 205 (2020).

[35] A. Eickbusch, V. Sivak, A. Z. Ding, S. S. Elder, S. R. Jha,
J. Venkatraman, B. Royer, S. M. Girvin, R. J. Schoelkopf,
and M. H. Devoret, Nature Physics 18, 1464 (2022).

[36] B. M. Terhal and D. Weigand, Phys. Rev. A 93, 012315
(2016).

[37] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-
Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S. Puri,
S. Shankar, R. J. Schoelkopf, L. Frunzio, M. Mirrahimi,
and M. H. Devoret, Nature 584, 368 (2020).

[38] C. Flühmann and J. P. Home, Physical Review Letters
125, 043602 (2020).

https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1126/SCIENCE.279.5349.342
https://doi.org/10.1126/SCIENCE.279.5349.342
https://doi.org/10.1137/S0097539799359385
https://doi.org/10.1137/S0097539799359385
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PHYSREVA.86.032324
https://doi.org/10.1103/PHYSREVA.86.032324
https://doi.org/10.22331/q-2020-07-16-296
https://doi.org/10.22331/q-2020-07-16-296
https://doi.org/10.1103/PRXQUANTUM.2.030305
https://doi.org/10.1103/PRXQUANTUM.2.030305
https://doi.org/10.26421/QIC14.15-16-5
https://doi.org/10.26421/QIC14.15-16-5
https://doi.org/10.1103/PRXQUANTUM.2.040101
https://doi.org/10.1103/PRXQUANTUM.2.040101
https://doi.org/10.1103/PhysRevA.56.1114
https://doi.org/10.1103/PhysRevA.56.1114
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1088/2058-9565/ABE989
https://doi.org/10.1088/2058-9565/ABE989
https://doi.org/10.1016/J.FMRE.2020.12.006
https://doi.org/10.1016/J.FMRE.2020.12.006
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41586-023-05782-6
https://doi.org/10.1038/s41586-023-05784-4
https://doi.org/10.1038/s41586-023-05784-4
https://doi.org/10.1038/s41586-021-03257-0
https://doi.org/10.1038/s41567-021-01487-7
https://doi.org/10.1103/PhysRevLett.132.150607
https://doi.org/10.1103/PhysRevLett.132.150607
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1126/SCIENCE.AAT3996/SUPPL_FILE/AAT3996-ROSENBLUM-SM.PDF
https://doi.org/10.1103/PHYSREVX.9.041009
https://doi.org/10.1103/PHYSREVX.9.041009
https://doi.org/10.1038/s41534-017-0019-1
https://doi.org/10.1038/s41534-017-0019-1
https://arxiv.org/abs/2209.03934
https://arxiv.org/abs/2209.03934
https://arxiv.org/abs/2209.03934
https://arxiv.org/abs/2404.16697
https://arxiv.org/abs/2404.16697
https://doi.org/10.1103/PHYSREVLETT.128.110502
https://doi.org/10.1103/PHYSREVLETT.128.110502
https://arxiv.org/abs/2405.11375
https://arxiv.org/abs/2405.11375
https://arxiv.org/abs/2405.11375
https://doi.org/10.1073/PNAS.2311241121
https://doi.org/10.1103/PRXQuantum.4.020337
https://doi.org/10.1103/PRXQuantum.4.020337
https://doi.org/10.1103/PhysRevA.107.042407
https://doi.org/10.1038/s41586-020-2587-z
https://doi.org/10.1038/s41567-022-01776-9
https://doi.org/10.1103/PhysRevA.93.012315
https://doi.org/10.1103/PhysRevA.93.012315
https://doi.org/10.1038/s41586-020-2603-3
https://doi.org/10.1103/PHYSREVLETT.125.043602
https://doi.org/10.1103/PHYSREVLETT.125.043602

Architecting a quantum operating system:
microkernel, message passing and supercomputing

Alexandru Paler
Aalto University, Finland
alexandru.paler@aalto.fi

Abstract
Quantum computers require an operating system (QCOS).
A QCOS is classic software running on classic hardware,
responsible for preparing, starting, and managing quantum
computations. In the following, we discuss why a QCOS
should be architected as follows: 1) using a microkernel; 2)
the software components are working in an aggregated, non-
stacked manner and communicate by message passing; 3)
the components are executed by default on supercomputers,
unless there are very good reasons not to.

1 Introduction
Technology roadmaps (e.g. [1, 10]), envision the early 2030s
as the moment when large scale quantum computers might
be operating. To have a QCOS ready by that deadline, its
components have to be as small as possible, well de�ned,
working and integrated1. Therefore, this is not to open a
Tanenbaum – Torvalds-like debate, but to use parts of the
experience of NASA’s Apollo programme when building
the �rst QCOS. In a nutshell, the Apollo approach [8] is: 1)
meeting a �xed deadline means to work backward to iden-
tify the points by which sub-systems have to be ready and
integrated; 2) given a choice between two technologically
workable ways to do something, take the better, proven and
more expensive way. We argue that the better, proven and
more expensive way are supercomputers running a QCOS
built on top of a microkernel.
Practical quantum computations will require millions of

qubits (e.g. [5, 7]), such that distributed quantum comput-
ers have been proposed [13]. At the same time, it has been
shown that a QCOS could use Grover’s algorithm to speed
up classical OS functions like scheduling [4]. Although any
OS could bene�t from quadratic speedups, qubits are such
a scarce resource that it would be better to use them for
quantum chemistry, for example.
A supercomputer would enable the extremely scalable

control of millions of physical qubits, and support the fault-
tolerance of the QCOS. Nevertheless, for some tasks, such as
the decoding of quantum error-correcting codes (e.g. [2, 12]),
the communication latency between a quantum computer
and supercomputer might be too large.

1This is a shorter and updated version of the manuscript published in [9]

Figure 1. Architecture and interaction diagram of the QCOS.
Each triangle is a QCOS component. The arrows indicate a
non-strict execution order of the components. To execute
a quantum algorithm, the �rst part of the QCOS is o�ine
(blue arrow and triangles), after which online preparations,
optimisations etc. are performed in a loop (red spiral and
triangles). The component pictograms represent elements of
quantum circuits protected by the braided surface quantum
error-correcting code [14].

2 An aggregated architecture
Our QCOS has an aggregated architecture, meaning that
there is no top-down work-�ow, and all components operate
at the same level (Figure 1). At the same time, the quan-
tum computer control software has been proposed having
layered, stacked and densely interacting software compo-
nents (e.g. [6]). This is a trait of almost-monolithic archi-
tectures. Monolithic kernels do not exhibit high levels of
fault-tolerance (e.g. a driver crash can panic the kernel and
stop the entire system).
The fault-tolerance of the QCOS plays a signi�cant role

in evaluating the total reliability of an arbitrary quantum
computation. In general, it is common for systems to fail
even when every component is correct and seems secure [3].
It would be ironic for the quantum computing pessimists

to be right, but not because the quantum technology or the
QCOS would not be scalable per se, but because the QCOS
is unknowingly faulty.
Our proposal is to depart from monolithic architectures

and to use distributedmicrokernels (so-called splitkernels [11])
in order to increase the QCOS fault-tolerance. The simplest
QCOS architecturewill have a loosely coupled and distributed
architecture, which will include components for circuit com-
pilation, optimisation, error-correction, decoding etc. These
components are running on top of the microkernel.
A microkernel assumes that the QCOS is light and the

components are applications, whereas in a splitkernel the
components are parts of the kernel, and have high execution
priority. A splitkernel for classical OS has been proposed
by [11], and the overall system fault-tolerance has increased,
while the performance did not drop signi�cantly – we in-
crease the fault-tolerance by using micro- and split-kernels
at the same time.

3 Message-passing components
The QCOS will be started each time a quantum algorithm is
executed. The QCOS components and the splitkernel should
use message-passing (e.g. MPI), which is a natural communi-
cation strategy in supercomputing.
In Figure 1 there is a QCOS boot phase (o�ine, blue tri-

angles), and a QCOS execution phase (online, red triangles).
During boot, the quantum algorithm is compiled and op-
timised in the form of a quantum circuit. The next step is
to prepare the error-corrected quantum circuit o�ine. Of-
�ine compilation, optimisation and error-correction are very
complex and may take a lot of time. The booting phase is an
abstraction of the entire procedure until the actual execution
of the quantum algorithm is started.
The unique character of the QCOS is given by its online

components, which are used to take corrective measures
in a real-time, low-latency and resilient manner in order to
maintain computational fault-tolerance.
The advance being proposed here is the scalable and re-

silient feedback-loop between the high level quantum algo-
rithm and the quantum computer. During the loop’s exe-
cution, the circuits are now compiled and optimized based
on the stream of results received from the computer. After
compilation, the error-corrected representation of the com-
putations is translated to quantum hardware instructions.
The instructions are sent through a hardware interface to
the quantum computer. The QCOS schedules instructions
into discrete rounds. For example, in Figure 1, there are yel-
low and magenta rounds, and green crosses represent the
hardware qubits.

Real-time error decoding is a topic of intense research, be-
cause the QCOS has to face immense data rates generated by
the millions of qubits[2]. Quantum measurements are proba-
bilistic, and instruction execution generates a probabilistic

binary measurement result. The feedback for correcting the
computations is formed by themeasurement results collected
through the hardware interface. Error-correction tracking
uses the feedback stream: error syndromes are computed,
and the execution of the quantum computation is dynami-
cally adapted in case computational corrections are needed.

Corrections imply online compilation and optimisation of
sub-circuits. The mapping component is to communicate to
the optimisation component that further work is necessary
to �t the computation on the available qubits. Overall, the
functionality of the QCOS has to be perfectly timed, because
the quantum hardware cannot wait for an optimisation stuck
in local minima.

4 Running the QCOS on a supercomputer
The aggregated QCOS should be easily executed on a super-
computer. The QCOS problem is di�cult, but not extrava-
gantly complex in the sense of computer science theory, and
throwing more hardware at it to solve it should be �ne [8].
The advantages of using a supercomputer are that the nodes
communicate through very high speed links, message pass-
ing is natively supported, and supernodes could be used for
each QCOS component. Almost surely these supercomputers
would be able to process at the necessary throughput.

The cost of a supercomputer QCOS does not seem ex-
aggerated when considering that the most powerful ones
are around $400 million. It is reasonable to assume that the
million-qubit quantum computer will cost more than the
supercomputer needed to control it. In fact, nobody has built
a simple aggregated QCOS starting from all the freely avail-
able software for compiling, optimising and error-correcting
quantum circuits. The impossibility of controlling a large
scale quantum computer could be rebutted by a supercom-
puter aggregated QCOS capable of handling the most horri�c
worst-case scenarios of error-correction.

References
[1] [n. d.]. Quantinuum accelerates the path to Universal Fully Fault-

Tolerant Quantum Computing; supports Microsoft’s AI and quantum-
powered compute platform and “the path to a Quantum Supercom-
puter” — quantinuum.com. https://www.quantinuum.com/blog/quan
tinuum-accelerates-the-path-to-universal-fault-tolerant-quantum
-computing-supports-microso�s-ai-and-quantum-powered-compu
te-platform-and-the-path-to-a-quantum-supercomputer. [Accessed
11-10-2024].

[2] Francesco Battistel, Christopher Chamberland, Kauser Johar, Ra-
mon WJ Overwater, Fabio Sebastiano, Luka Skoric, Yosuke Ueno, and
Muhammad Usman. 2023. Real-time decoding for fault-tolerant quan-
tum computing: Progress, challenges and outlook. Nano Futures 7, 3
(2023), 032003.

[3] Steven M Bellovin and Peter G Neumann. 2018. The big picture.
Commun. ACM 61, 11 (2018), 24–26.

[4] Keith A Britt, Fahd A Mohiyaddin, and Travis S Humble. 2017. Quan-
tum Accelerators for High-Performance Computing Systems. In Re-
booting Computing (ICRC), 2017 IEEE International Conference on. IEEE,
1–7.

https://www.quantinuum.com/blog/quantinuum-accelerates-the-path-to-universal-fault-tolerant-quantum-computing-supports-microsofts-ai-and-quantum-powered-compute-platform-and-the-path-to-a-quantum-supercomputer
https://www.quantinuum.com/blog/quantinuum-accelerates-the-path-to-universal-fault-tolerant-quantum-computing-supports-microsofts-ai-and-quantum-powered-compute-platform-and-the-path-to-a-quantum-supercomputer
https://www.quantinuum.com/blog/quantinuum-accelerates-the-path-to-universal-fault-tolerant-quantum-computing-supports-microsofts-ai-and-quantum-powered-compute-platform-and-the-path-to-a-quantum-supercomputer
https://www.quantinuum.com/blog/quantinuum-accelerates-the-path-to-universal-fault-tolerant-quantum-computing-supports-microsofts-ai-and-quantum-powered-compute-platform-and-the-path-to-a-quantum-supercomputer

[5] Earl T Campbell, Barbara M Terhal, and Christophe Vuillot. 2017.
Roads towards fault-tolerant universal quantum computation. Nature
549, 7671 (2017), 172.

[6] Xiang Fu, MA Rol, CC Bultink, J van Someren, Nader Khammassi, Im-
ran Ashraf, RFL Vermeulen, JC de Sterke, WJ Vlothuizen, RN Schouten,
et al. 2018. A microarchitecture for a superconducting quantum pro-
cessor. IEEE Micro 38, 3 (2018), 40–47.

[7] Craig Gidney and Martin Ekerå. 2021. How to factor 2048 bit RSA
integers in 8 hours using 20 million noisy qubits. Quantum 5 (2021),
433.

[8] Thomas Haigh. 2018. Hey Google, what’s a moonshot?: how Silicon
Valley mocks Apollo. Commun. ACM 62, 1 (2018), 24–30.

[9] Alexandru Paler. 2020. Aggregated control of quantum computations:
When stacked architectures are too good to be practical soon. Computer
53, 8 (2020), 74–78.

[10] Riverlane. [n. d.]. Introducing Riverlane’s Quantum Error Correction
roadmap - Riverlane — riverlane.com. https://www.riverlane.com/

blog/introducing-riverlane-s-quantum-error-correction-roadmap.
[Accessed 11-10-2024].

[11] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed {OS} for Hardware Resource
Disaggregation. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 69–87.

[12] Luka Skoric, Dan E Browne, Kenton M Barnes, Neil I Gillespie, and
Earl T Campbell. 2023. Parallel window decoding enables scalable
fault tolerant quantum computation. Nature Communications 14, 1
(2023), 7040.

[13] Rodney Van Meter and Simon J Devitt. 2016. The path to scalable
distributed quantum computing. Computer 49, 9 (2016), 31–42.

[14] Rodney Van Meter and Clare Horsman. 2013. A blueprint for building
a quantum computer. Commun. ACM 56, 10 (2013), 84–93.

https://www.riverlane.com/blog/introducing-riverlane-s-quantum-error-correction-roadmap
https://www.riverlane.com/blog/introducing-riverlane-s-quantum-error-correction-roadmap

